INFORMATIONAL INFORMATION SYSTEMS (IIS)

DATA WAREHOUSE

Rielaborato a partire da «Sistemi informativi aziendali – struttura e processi» Autori - Maurizio Pighin, Anna Marzona Casa editrice Pearson Italia

GOALS Of An Informational I.S.

- Exploit operational data to create useful information for decision making and strategic planning;
- Enrich operational data with other sources;
- Overcome the limit of basic «decision making approach» based on spread sheets and reports

Reporting

X

× Static

. . .

- × Time consuming
- × Limited information
- × Biased information

Spreadsheets

- × Time consuming
- × Complex
- Assuring data complexity is hard
- × Proliferation of custom-made spreadsheets
- × Limited quantity of data that can be stored

GOALS Of An Informational I.S.

- Exploit operational data to create useful information for decision making and strategic planning;
- Enrich operational data with other sources;
- Overcome the limit of basic «decision making approach» based on spread sheets and reports

Reporting

X

- × Static
- × Time consuming
- × Limited information
- × Biased information

Time consuming «never ending cycle»

GOALS Of An Informational I.S.

- Exploit operational data to create useful information for decision making and strategic planning;
- Enrich operational data with other sources;
- Overcome the limit of basic «decision making approach» based on spread sheets and reports

Spreadsheets

- × Time consuming
- × Complex
- Assuring data complexity is hard
- Proliferation of custom-made spreadsheets
- × Limited quantity of data that can be stored

Type of Queries

- Query on operational IS are prefixed, precise and based on few data
 - Which is the discount rate of a customer?
 - Which Work Orders have been assigned to a department?
 - Which products are below the Reorder Point?
 - Which invoices have not been paid yet?
 - Query on informational IS are fuzzy, complex based on several data and depends on the «reasoning of the decision makers»
 - Has the margin of Product X increased? By how much?
 - Is there a correlation between educational level and purchasing propensity?
 - Which is the impact of transportation costs? How these costs change depending on the size and shape of transported material?

Requirements of an IIS

- Data Base
 - Intuitiveness storing procedures are easy to be understood
 - Efficiency Query are executed very rapidly
 - Data coming from different sources
 - Data consistency Data are cleaned and updated in a consistent way
- Data Analysis Tools
 - Reporting
 - Dash boarding
 - Tools for Interactive Analysis and for easy queries formulation
 - Data Mining (Optional)

... Some Terminology

Data Warehouse

- The Data Base (mostly multi-dimensional)

Data Warehousing

- Tools & Techniques to build and maintain a Data Warehouse
- Decision Support System (DSS)
 - Informatic tools, used during the decision making process, to help managers in the <u>extraction and analysis</u> of data that are stored in the operational Information system, or coming from other data sources

Data Mining

 Tools & Techniques to extract/find <u>hidden/unknown/unexpected</u> relationship among the data

Business Intelligence

 Extraction of <u>data needed for business analysis</u>, generated by transactions at the operational level

Knowledge Management

 Data <u>filing and data retrieval</u> extended to all data and documents (also non structured) generated by the business

Knowledge Management

Techniques used to «Reorganize knowledge generated by a • business» in a way that allows an easy and rapid data and documents retrieval

- The process entails:
 - Huge amount of data coming from different sources
 - Both structured and unstructured data

A Comparison of IIS and OIS

Informational I.S.

• GOALS

- Create knowledge from row data
- Describe historical trends, understand root causes and formulates solutions
- Evaluate/Simulate the effects of strategic actions

STRUCTURE

 Data are <u>organized in terms</u> <u>of events</u> and/or subjects that are relevant for a company

Operational I.S.

• GOALS

- Execution, simplification and automation of current activities
- Improve efficiency of daily standard and activities

STRUCTURE

 Data are organized <u>accordingly to the</u> <u>processes</u> that generate transactions that are meaningful for the company.

A Comparison of IIS and OIS

IIS

Historicity

- Historical data
- Many years are covered
- Detail Level
 - Highly aggregated data
 - Many hierarchies are possible
- Data Accessibility
 - Read only accesses
 - Data updated periodically and in batches
- Key Users
 - Top managers, generally with low PC programming skills

OIS

Historicity

- Current state
- Data of the last few years
- Detail Level
 - Punctual Data
 - Maximum level of detail
- Data Accessibility
 - Interactive and continuous
 - Read and write
- Key Users
 - Operational Staff
 - Departments' heads

OLTP Vs OLAP

- OIS → On Line Transaction Processing (OLTP)
- IIS → On Line Analytical Processing (OLAP)

OLTP

- Easy, predefined and short transactions
- Detailed, up to date and consistent data
- ✓ Integrated and unique RDB
- ✓ Read & Write of few records
- ✓ ACID Properties
 - ✓ Atomicity
 - ✓ Consistency
 - ✓ Isolation
 - ✓ Durability

OLAP

- ✓ Complex and "casual" queries
- ✓ Interactive GUI
- Historical and aggregated data
- Data coming from several database
- ✓ Data stored in a central multidimensional Data Warehouse
- ✓ Read only access
- ✓ Data updated at discrete time
- ✓ Generation of unknown information and knowledge
- ✓ **FASMI** Properties

ACID Properties

- A <u>transaction is a single logical unit of work</u>, which accesses and possibly modifies the contents of a database (using read and write operations).
- <u>To maintain consistency</u> in a database, before and after the transaction, ACID properties are followed.

ATOMICY (A)

- The entire transaction takes place at once or does not takes place at all

CONSISTENCY (C)

- The DB must be consistent before and after the transaction

ISOLATION (I)

– Multiple transactions occur simultaneously and without interference

DURABILITY (D)

The change of a successful transaction occurs even if a system failure occurs.

FASMI Properties – OLAP Report 1995

F - Fast

- Fast Interactive use
- Waiting Time must not be a hurdle, it must not interrupt user's reasoning

A - Analytic

- Dashboard & reporting function
- Statistical computation on both historic and newly generated data

S - Shared

- Used by managers of different areas, also with multiple and simultaneous accesses
- Data security must be grant

M - Multidimensional

- Same data must be considered from different perspective
- Different dimensions for the analysis

I - Informational

- Generated information must be saved and reused
- Information should be converted in knowledge

ETL (Extraction, Transformation Loading)

Data comes from different Relational Databases, but also non structured data can be loaded in the Data Warehouse

Sources

- Original Input RDBs
- Access using RDBMS

Staging Area (optional)

- An intermediate are, where data are temporarily stored before being processed, transformed, checked, etc.
- ETL (Extraction, Transformation Loading)

Data Warehouse

- Central Multi Dimensional Data Base
- Contains all relevant data

Data Mart

- Sub Set of the Data Warehouse
- Smaller and specific multidimensional Data Bases used for specific analysis

- Mono Level Architecture (not a real IIS)
 - OLAP engines works, directly, on the RDB of the OIS
 - It is a partial solution
- Dual Level Architecture (common)
 - Multiple Sources + Data Warehouses
 - Data Marts

Three Level Architecture (rare)

- Multiple Sources + Data Warehouses
- Data Marts
- Staging Area
 - Transfer and data transforming procedure
 - Data Analysis Tools

- Data are organized in terms of «subjects and events to which they participate»
- Information is coded using multi dimensional matrices (or tensors)
 - Each matrix represents a specific event
 - Each element quantifies, through a measure, a specific event
 - Each dimension corresponds to a specific coordinate of the event

Yearly Income	Years 🔽							
Country	2010	2011	2012	2013	2014	2015	2016	Total Income
Italy	€ 4.046	€ 6.360	€ 6.882	€ 9.790	€ 7.232	€ 10.222	€ 8.369	€ 52.901
France	€ 8.012	€ 6.392	€ 7.126	€ 6.105	€ 6.481	€ 8.102	€ 11.755	€ 53.973
UK	€ 5.419	€ 5.458	€ 6.470	€ 3.901	€ 4.935	€ 7.656	€ 5.671	€ 39.510
Spain	€ 5.505	€ 5.680	€ 5.671	€ 5.445	€ 7.448	€ 7.096	€ 6.118	€ 42.963
Austria	€ 1.545	€ 505	€ 770	€ 1.829	€ 2.332	€ 2.379	€ 2.672	€ 12.032
Germany	€ 5.650	€ 2.057	€ 2.351	€ 1.491	€ 2.394	€ 2.977	€ 2.474	€ 19.394
Switerland	€ 322	€ 2.565	€ 2.114	€ 1.132	€ 1.543	€ 1.660	€ 3.159	€ 12.495

Pivot Table are a good example. In this case:

- The matrix represents
 Sales
- Income is the way in which sales are quantified
- Country and Years are the dimensions
- Adding filtering fields would add dimensions

- Let us consider an example The Meta_Data (i.e., Tables) needed to records customers' orders
- The Relational DB is organized according to the ordering process
 - The Customer and the Salesman are the "actors" of this process.
 - So we need the customers' and the salesmen registry (master data)
 - To complete an order there is the need to access to the product list and to "explode it" into its lines (each line correspond to a specific item included in the order).
 - The **ORDERS, ORDERS_DETAIL and ITEMS** Tables are used to this scope.

- So, to comply with the structure of the process and due to normalization rules, data concerning a single sale is spread over four distinct Tables
- In other words the information is fragmented.
- How can we recombine it to make it usable?

- We want to get information about **sales** i.e., <u>our fact is a sale event</u>, that is each element of the sensor will contain information about a specific sale
- But how? We need to decide the <u>way/metrics needed to quantify the</u> <u>sale</u>. For example: Total Value, or Total Quantity should fit.
- Is this sufficient? No, we also need to <u>define the dimensions</u> of our fact.
- For example we could be interested in:
 - Time
 - Product
 - Customer
 - Salesman
 - Country
- In this way we could answer to the following queries:
 - How much are the total sales in a specific year?
 - And for a specific customer?
 - And in a specific country?

 For instance with a single metric (say Total Value) and three dimensions (say Time, Country and Product), the tensors would be as in the following example

Countries

- We need to create a View (i.e., a macro and redundant table) containing all the data that we need
- Specifically all selected dimensions and metrics will be the fields of the view
- Once we have this view we can navigate through the data as we prefer
- A simple, but long join query, is therefore needed ۲ SELECT ORDERS.ID, CUSTOMERS.*, SALESMEN.*, ORDERS.DATE, _ [ORDERS DETAILS].ITEM_ID, ITEMS.ITEM_CODE, [ORDERS DETAILS].QUANTITY, ITEMS.STANDARD_PRICE, [ORDERS DETAILS].DISCOUNT_RATE, [ORDERS DETAILS].[QUANTITY]*[ITEMS].[STANDARD_PRICE]*_ (1-[ORDERS DETAILS].[DISCOUNT_RATE]) AS TOTAL, _ [ORDERS DETAILS].[QUANTITY]*[ITEMS].[STANDARD_PRICE]* _ (1-[ORDERS DETAILS].[DISCOUNT RATE])* [ORDERS DETAILS].[COMMISSION_RATE] AS Commission FROM (CUSTOMERS INNER JOIN (SALESMEN INNER JOIN ORDERS ON _ SALESMEN.[ID_SALESMAN] = ORDERS.[SALESMAN_ID]) ON CUSTOMERS.[CUSTOMER_ID] = ORDERS.[CUSTOMER_ID]) INNER JOIN (ITEMS INNER JOIN [ORDERS DETAILS] ON ITEMS.[ITEM_ID] = [ORDERS DETAILS].[ITEM_ID]) ON ORDERS.ID = _ [ORDERS DETAILS].[ORDER ID]
 - **ORDER BY** ORDERS.DATE

An observation

- In the query above we did not use any group operating function. So we did not make any data aggregation.
- In this case the <u>query returns as many records (say R) are the ones</u> included in the ORDER DETAILS Table. Each one is an event, i.e., an element of the tensor.
- The granularity of the Data Warehouse is the same as the original DB
- Also, if Y, C and P are the number of years, countries and products, respectively, the total number of possible events is Y x C x P. So R, out of a total of Y x C x P possible event will be quantified, the other remain empty
- The tensor is "sparse" (non densely populated)
- Clearly, we should have performed some kind of data aggregation
- For instance, if we are not interested in daily sales, we could have summed sales per month, or even for year.
- Alternatively we could have summed sales per country, etc.
- This is absolutely licit and very common. In this case the granularity of the Data Warehouse differs from that of the original Data Base

- We need to create a View (i.e., a macro and redundant table) containing all the data that we need
- Once we have this view we can navigate through the data as we prefer
- To this aim a JOIN QUERY is needed
- The query is easy, but very long
- The obtained View is shown below

2	ID 👻	CUS1 🗸	CUSTOM -	CITY 👻	REGION -	COUNTR) -	ID_SA -	SALESM -	AREA_C(-	DATE 👻	ITEM ITEM_CC -	QUAN 🗸	STANDAR -	DISCO 👻	Total 🔹	Commission -
	1	. 1	Carlozzi	Roma	Lazio	Italia	1	Bianchi	Area 1	01/11/2017	1 A_1	10	100,00€	0	1000	100
	1	. 1	L Carlozzi	Roma	Lazio	Italia	1	Bianchi	Area 1	01/11/2017	2 A_2	5	500,00€	0,1	2250	225
	2	1	Carlozzi	Roma	Lazio	Italia	2	Rossi	Area 2	02/11/2017	1 A_1	10	100,00€	0,1	900	90
	2	1	Carlozzi	Roma	Lazio	Italia	2	Rossi	Area 2	02/11/2017	2 A_2	5	500,00€	0	2500	250
	3	1	L Carlozzi	Roma	Lazio	Italia	1	Bianchi	Area 1	03/11/2017	3 A_3	10	1.000,00€	0	10000	1000
	3	1	L Carlozzi	Roma	Lazio	Italia	1	Bianchi	Area 1	03/11/2017	4 A_3	5	200,00€	0	1000	100
	4	1	Carlozzi	Roma	Lazio	Italia	2	Rossi	Area 2	04/11/2017	5 B_1	10	300,00€	0	3000	450
	5	1	L Carlozzi	Roma	Lazio	Italia	3	Verdi	Area 1	05/11/2017	1 A_1	5	100,00€	0,2	400	40
	6	1	L Carlozzi	Roma	Lazio	Italia	2	Rossi	Area 2	06/11/2017	2 A_2	1	500,00€	0	500	50
	7	2	2 Mengoni	Perugia	Umbria	Italia	2	Rossi	Area 2	07/11/2017	3 A_3	2	1.000,00€	0	2000	200
	8	3	8 Menozzi	Parma	Emilia Rom	Italia	3	Verdi	Area 1	08/11/2017	4 A_3	3	200,00€	0	600	90
	9	3	8 Menozzi	Parma	Emilia Rom	Italia	3	Verdi	Area 1	09/11/2017	5 B_1	4	300,00€	0	1200	120
	9	3	8 Menozzi	Parma	Emilia Rom	Italia	3	Verdi	Area 1	09/11/2017	5 B_1	5	300,00€	0	1500	150
	10	4	Caldaveri	Firenze	Toscana	Italia	3	Verdi	Area 1	10/11/2017	4 A_3	6	200,00€	0,3	840	84
	11	5	5 Bixel	London	Central	UK	3	Verdi	Area 1	11/11/2017	3 A_3	7	1.000,00€	0	7000	700
	12	5	5 Bixel	London	Central	UK	4	Bruni	Area 2	12/11/2017	2 A_2	8	500,00€	0	4000	600
	13	5	5 Bixel	London	Central	UK	4	Bruni	Area 2	13/11/2017	1 A_1	9	100,00€	0	900	135
	13	5	5 Bixel	London	Central	UK	4	Bruni	Area 2	13/11/2017	2 A_2	10	500,00€	0,4	3000	450

•	CUS1 -	CUSTOM -	CITY 🔹	REGION -	COUNTR) -	ID_SA -	SALESM -	AREA_CI +	DATE -	ITEM, •	ITEM_CC -	QUAN -	STANDAR -	DISCO -	Total 🔹	Commission -
	1 1	L Carlozzi	Roma	Lazio	Italia	1	Bianchi	Area 1	01/11/2017	1	A_1	10	100,00€	0	1000	10
	1 1	L Carlozzi	Roma	Lazio	Italia	1	Bianchi	Area 1	01/11/2017	2	A_2	5	500,00€	0,1	2250	22
- 1	2 1	L Carlozzi	Roma	Lazio	Italia	2	Rossi	Area 2	02/11/2017	1	A_1	10	100,00€	0,1	900	1
- 1	2 1	L Carlozzi	Roma	Lazio	Italia	2	Rossi	Area 2	02/11/2017	2	A_2	5	500,00€	0	2500	2
	3 1	L Carlozzi	Roma	Lazio	Italia	1	Bianchi	Area 1	03/11/2017	3	A_3	10	1.000,00€	0	10000	10
	3 1	L Carlozzi	Roma	Lazio	Italia	1	Bianchi	Area 1	03/11/2017	4	A_3	5	200,00€	0	1000	1
4	4 1	L Carlozzi	Roma	Lazio	Italia	2	Rossi	Area 2	04/11/2017	5	B_1	10	300,00€	0	3000	4
1	5 1	L Carlozzi	Roma	Lazio	Italia	3	Verdi	Area 1	05/11/2017	1	A_1	5	100,00€	0,2	400	4
- (5 1	L Carlozzi	Roma	Lazio	Italia	2	Rossi	Area 2	06/11/2017	2	A_2	1	500,00€	0	500	
	7 2	2 Mengoni	Perugia	Umbria	Italia	2	Rossi	Area 2	07/11/2017	3	A_3	2	1.000,00€	0	2000	2
- 1	8 3	8 Menozzi	Parma	Emilia Rom	Italia	3	Verdi	Area 1	08/11/2017	4	A_3	3	200,00€	0	600	
1	9 3	8 Menozzi	Parma	Emilia Rom	Italia	3	Verdi	Area 1	09/11/2017	5	B_1	4	300,00€	0	1200	1
1	Э З	8 Menozzi	Parma	Emilia Rom	Italia	3	Verdi	Area 1	09/11/2017	5	B_1	5	300,00€	0	1500	1
1) 4	1 Caldaveri	Firenze	Toscana	Italia	3	Verdi	Area 1	10/11/2017	4	A_3	6	200,00€	0,3	840	
1	1 5	5 Bixel	London	Central	UK	3	Verdi	Area 1	11/11/2017	3	A_3	7	1.000,00€	0	7000	7
1	2 5	5 Bixel	London	Central	UK	4	Bruni	Area 2	12/11/2017	2	A_2	8	500,00€	0	4000	6
1	3 5	5 Bixel	London	Central	UK	4	Bruni	Area 2	13/11/2017	1	A_1	9	100,00€	0	900	1
1	3 5	5 Bixel	London	Central	UK	4	Bruni	Area 2	13/11/2017	2	A 2	10	500,00€	0,4	3000	4

Data can be loaded on a Spread Sheet to create a Pivot Table

- Elements of the matrix (i.e. the facts) are the sales quantified in terms of units sold
- Dimensions are: (i) Country and (ii) Product Type and (iii) Salesman
- Note that the third dimension is shown as a filtering condition
- The geographic dimensions has a hierarchy, that is Country → Region → City

Cognomo Agonto	(niù alamanti)				
Cognome Agente	(plu elementi)	*			
Somma di QUANTITA	Etichette di colon	na 💌			
Etichette di riga	A_1		A_2 /	A_3 `	Totale complessivo
🗏 Italia		10	5	15	30
🗏 Lazio		10	5	15	30
Roma		10	5	15	30
⊞ UK		9	18		27
Totale complessivo		19	23	15	57

- Suppose we want to use years and countries as dimensions, and sale quantities as metric.
- In Access we can use the "Cross Table Format" to create a 2Dim Matrix (the Pivot query option is no longer available)
- SELECT Query, made on the View that we have obtained before;

SELECT Country, Year(Data) _
 SUM(Quantity) AS [TOT Q],
FROM VIEW
GROUP BY Country, Year(Data)

Year

2	Country -	2016	-	2017 -	2018	*
	ITALY		3	19		3
	UK					5
	USA		4	6		2

The query in crosstab format

	· · · · ·	—
2016	ITALY	3
2016	USA	4
2017	ITALY	19
2017	USA	6
2018	ITALY	3
2018	UK	5
2018	USA	2

Country

The query in standard Table format

Tot O

- Information is coded using multi dimensional matrices
- Hyper Cube: graphical representation of a multi dimensional matrix representing a certain event
 - Granular Fact An element at the intersection of the coordinates
 - Measure A value that quantifies a fact
 - Dimension The value of one coordinate of a fact

Fact – Measures and Aggregability

- How to identify a fact?
 - Fact (Dimension 1, ..., Dimension N)
 - Measure (Dimension 1, ..., Dimension N).<Measure Quantifier>
- If all dimensions are quantified (at their maximum granularity level) what we get is an elementary fact
- Aggregated events can also be obtained
 - If some dimensions are not considered (*,*,Dimension,*,*)
 - By aggregating data (<u>drilling up along</u> a dimensions) using specific grouping operators: Sum, Average, Max, Min,
- It is always possible to aggregate data along a dimension?
- Grouping operators can be used on every dimensions?

Aggregability

ITEM		Warehouse	Date	On Hand
PP1007015	Polystyrene Panel 100x70x1.5	Raw Material	13/02/05	100
PP1007015	Polystyrene Panel 100x70x1.5	Acceptance	13/02/05	20
VA1010	Iron Screw 10mmx1	Raw Material	13/02/05	24002
PP1007015	Polystyrene Panel 100x70x1,5	Raw Material	14/02/05	110
PP1007015	Polystyrene Panel 100x70x1,5	Acceptance	14/02/05	0
VA1010	Iron Screw 10mmx1	Raw Material	14/02/05	23870

- (PP1007015,Raw Material,13/02/2005).OH = 100 Y
- (PP1007015,*,13/02/2005).OH = 100 + 20 = 120 Y
- (PP1007015, Raw Material, *).OH = 100 + 110 = 201 ? ×
- (PP1007015, Raw Material,*).OH = AVG(100 + 110) Y
- (*,Raw Material, 12/01/2005).OH = 100 + 24002 ? ×
- (*,Raw Material, 12/01/2005).\$ this would be fine!!! Y

Additivity (i.e., Aggregation through Sum)

- Level Measures are never additive relative to time
 - A specific property of a fact depending, directly, on the time in which the fact has occurred (On Hand, Number of Orders, Etc.)
- Unitary Measures are never additive
 - <u>A property of the subject to which the events belongs</u> to and that depends, directly, on the time in which the fact has occurred (purchase price, discount rate, interest rate, etc.)

• Flux Measures are always additive (\forall dimension)

 A property of a fact observed over a certain period, taken as reference (number of units sold, income, number of complaints, etc.)

Hierarchies

- Dimensions may be the root node of a hierarchy
- Each node corresponds to a specific aggregation, made (drilling up) along the root dimension

OLAP OPERATORS

Drill-Down

- The level of details is increased
 - Moving down along a hierarchy
 - Adding new dimensions

Roll-Up

- Data are aggregated:
 - Going up along a hierarchy
 - Removing one dimension

Slice

- The value of one dimension is fixed
- The portion of (filtered) data obtained in this way will be analyzed next

Dice

- Data are filtered
- Two or more dimensions are fixed at a certain level

Pivot

- Relationships, in terms of dimensions, are reversed

A rotation of the cube is made

ITEM	Area		2013		2	014				
	Center		60		56	56				
Item #1	Est		203		22	20				
	West		64		64	1				
ITEM	Year	Cen	ter	Est		West				
Articolo #1	2013	60		203		64				
	2014	56	220			64				

Dimensional Fact Model

- Dimensional Fact Model is a graphical way to depict the facts around which the warehouse is structured
- Each Fact is represented through a «Fact Scheme»

Fact

• Represented with a rectangle containing the name and the measures of the fact

Basic Dimensions

 Represented with circles connected to the fact

Dimensional Fact Model

Data Warehouse and Data Mart

A Data Mart is a sort of «Thematic Warehouse»

- It contains only the facts that are relevant for a certain area of research (or for a specific business function)
- Data pertain a limited temporal extension
- Data granularity is lower

LOGICAL MODELS (I)

- ROLAP MOLAP HOLAP
- $\mathsf{ROLAP} \rightarrow \mathsf{RELATIONAL} \ \mathsf{OLAP}$
 - A non normalized RDB is used to mimic a multi dimensional matrix
 - Queries are based on standard SQL

PRO

- Optimal memory usage
 i.e., Matrix's sparsity does
 not occur
- ✓ Data can be retrieved using simple joint queries
- Skills concerning RDB are widespread

CONS

- Queries' execution is not efficient, due to functions operating on groups
- × Data redundancy, due to non normalized RDB
- Inclusion of pre-saved
 Views is needed to speed
 computation time

STAR SCHEMA

- Most of the times ROLAP is based on a «Star Schema»
- Facts' multi-dimensional structure is realized using a RDB
- Facts and Dimensions are obtained using Tables with OTM relationships
- Tables are not normalized

STAR SCHEMA

- FACTS' TABLES
 - One Table for each Fact
 - One Field for each Measure
 - One FK for each Basic Dimension
- DIMENSIONS' TABLES
 - One Table for each Basic Dimension
 - One Field for each Attribute of the Hierarchy (having, as root the current dimension)
 - Not Normalized
 - Ignores redundancy concerning hierarchies
 - Does not take advantage of shared hierarchies

STAR SCHEMA - Example

- Let us consider the following DFM
- The corresponding ROLAP DW, with star schema, is shown next

Note that, in a certain way, the FKs of the Fact Table represent the codification of the three dimensions of the 3D Tensor the ROLAP structure is related to

STAR SCHEMA – DIMENSIONS' TABLES

ID	Suri	name	Country
1	AA	AAA	ITALY
2	BB	BBB	ITALY
3	CC	CCC	USA
4	DD	DDD	USA
5	EE	EEE	UK
ID	Year	Seaso	on Month
1	2016	Summ	ner 7
2	2016	Winte	er 12
3	2017	Sprin	ig 5
4	2017	Summ	ner 6
5	2017	Summ	ner 7

ID	Product	Туре
1	P1	RM
2	P2	RM
3	P3	SF
4	P4	SF
5	P5	EP

- Dimensions' Tables <u>create a mapping</u> between coordinates and their label
- Table is the dimensions
- ID is the coordinate
- The other fields are the label associated to a certain coordinate
- For instance CUSTOMERS has 5 possible coordinates, the first one correspond to the label [AAAAA; ITALY]
- Example
 - \checkmark (2,3,4) corresponds to
 - ✓ {[BBBBB, ITALY]; [2017, SPRING, 5]; [P4, SF]}

ID	ID_Time	ID_Prod	ID_Cust	Value	Quantity	Discount
1	1	2	3	10.00€	1	0.00%
2	2	2	4	20.00€	2	0.00%
3	4	3	3	17.00€	2	15.00%
4	1	1	1	36.00€	2	10.00%
5	2	3	6	106.50€	4	7.50%
6	3	3	2	176.80€	5	11.50%
7	1	4	4	47.50€	5	5.00%
8	2	3	3	25.50€	1	15.00%

- Each record is a fact of the Data Warehouse
- ID is just the PK, it does not have any physical meaning
- The <u>FKs are the coordinates</u>, they define the location of a record (the fact) in the tensors
- The other fields are the metrics that quantifies the fact
- For example the 4-th record is at coordinates (1,1,1) so it corresponds to the sales of product P1 made in Italy (customer AAAA) in the month of July

HOW TO POPULATE THE DIM. TABLES?

- Populating the DIMENSIONS TABLE is rather easy
- Let be <h₁,h₂,...,h_n> the <u>tuple defining the fields</u> of the starting View that correspond to the hierarchy of a Dimensions
- In our example one of this tuple is <Year, Season, Month>
- What we have to do is to select, in the original View, <u>all the tuples</u> <<u>h₁, h₂,..., h_n>, that are distinct</u>
- Each one of them is a specific coordinates of our tensor

SURNAME	COUNTRY	PRODUCT	TYPE	YEAR	SEASON	MONTH	QUANTITY	DISCOUNT	VALUE
DDDDD	USA	P1	RM	<u>2016</u>	<u>Summer</u>	<u>7</u>	1	0	10,00€
BBBBB	ITALY	P3	SF	2016	Summer	7	1	0.15	25,50€
BBBBB	ITALY	P4	SF	<u>2016</u>	<u>Winter</u>	<u>12</u>	2	0	80,00€
DDDDD	USA	P6	EP	2016	Summer	7	2	0	120,00€
DDDDD	USA	P5	EP	2016	Summer	7	1	0.1	45,00€
AAAAA	ITALY	P1	RM	<u>2017</u>	<u>Winter</u>	<u>1</u>	1	0	10,00€

Only the underlined tuples must be included in the TIME Dimension Table

HOW TO POPULATE THE DIM. TABLES?

- Populating the DIMENSIONS TABLE is rather easy
- Let be <h₁,h₂,...,h_n> the <u>tuple defining the fields</u> of the starting View that correspond to the hierarchy of a Dimensions
- What we have to do is to select, in the original View, <u>all the tuples</u> $< h_1, h_2, \dots, h_n >$, that are distinct
- Each one of them is a specific coordinates of our tensor
- So the INSERT INTO Query is straightforward

INSERT INTO TIME_TABLE (Year, Season, Month) SELECT DISTINCT Year, Season, Month FROM ORIGINAL_VIEW

HOW TO POPULATE THE FACT TABLE?

- Populating the FACT TABLE is a little bit trickier
- Let us consider the following scheme

ORIGINAL VIEW

SURNAME	COUNTRY	PRODUCT	TYPE	YEAR	SEASON	MONTH	QUANTITY	DISCOUNT	VALUE
DDDDD	USA	P1	RM	2016	Summer	7	1	0	10,00€
BBBBB	ITALY	P3	SF	2016	Summer	7	1	0.15	25,50 €
BBBBB	ITALY	P4	SF	2016	Winter	12	2	0	80,00€
DDDDD	USA	P6	EP	2016	Summer	7	2	0	120,00€
DDDDD	USA	P5	EP	2016	Summer	7	1	0.1	45,00 €
AAAAA	ITALY	P1	RM	2017	Winter	1	1	0	10,00 €

FACT TABLE

- ID is an autocalculated field
- The metrics are directly copied from the view to the table
- What about the FKs?

ID	ID_Cn	ID_Pr	ID_Tm	QUANTITY	DISCOUNT	VALUE
1	?	?	?	1	0	10,00€
2	?	?	?	1	0.15	25,50€
3	?	?	?	2	0	80,00€
4	?	?	?	2	0	120,00€
5	?	?	?	1	0.1	45,00€
6	?	?	?	1	0	10,00€

HOW TO POPULATE THE FACT TABLE?

- In the Original View we have the "Tuples", in the Fact Table we have the coordinates
- So we have to go back through the mapping defined in the Dimensions' Tables, moving in the opposite direction
- For example the first record of the Original View has the following mappings <DDDDD, USA>, <P1, RM>, <2016, Summer, 7> that correspond to dimensions (4, 1, 1)
- So we have:

ORIGINAL VIEW

SURNAME	COUNTRY	PRODUCT	TYPE	YEAR	SEASON	MONTH	QUANTITY	DISCOUNT	VALUE
DDDDD	USA	P1	RM	2016	Summer	7	1	0	10,00 €
		\checkmark _							
			ID	ID_Cn	ID_Pr	ID_Tm	QUANTITY	DISCOUNT	VALUE
	2		1	4	1	1	1	0	10,00€

STAR SCHEMA – DIMENSIONS' TABLES

•

ID	Surr	name	Country		
1	AA	4AA	ITALY		
2	BBI	BBB	ITALY		
3	CCO	222	USA		
4	DDI	DDD	USA		
5	EEI	EEE	UK		
ID	Year	Seaso	on Month		
1	2016	Summ	er 7		
2	2016	Winte	er 12		
3	2017	Sprin	g 5		
4	2017	Summ	er 6		
5	2017	Summ	er 7		

ID	Product	Туре
1	P1	RM
2	P2	RM
3	P3	SF
4	P4	SF
5	P5	EP

- For example the first record of the Original View has thefollowing mappings:
 - ✓ <DDDDD, USA>,
 - ✓ <P1, RM>,
 - ✓ <2016, Summer, 7>
- That correspond to dimensions (4,1,1)

HOW TO POPULATE THE FACT TABLE?

 So the question is, how can <u>we automatically perform the</u> <u>mapping</u> using a query written in SQL?

- The answer is quite easy, indeed, <u>for each record of the</u> <u>original view</u> we want to:
 - ✓ Get the values corresponding to the metrics fields,
 - Couple these values with the value of the primary key of all the Dimensions' Tables,
 - Make the association using, as selection criteria, the values in the fields (of the original view) corresponding to the "tuples" coded in the dimension table
- So we need to make <u>a JOIN Query (Cartesina Product)</u>, <u>linking the Original View with each one of the Dimensions'</u> <u>Tables</u>

HOW TO POPULATE THE FACT TABLE?

 So the question is, how can <u>we automatically perform the</u> <u>mapping</u> using a query written in SQL?

 We need to make <u>a JOIN Query, linking the Original View</u> with each one of the Dimensions' Tables

INSERT INTO FACT_TABLE (ID_Tm, ID_Pr, ID_Cs, Value, Quantity) SELECT D_TIME.ID, D_PRODUCTS.Id, D_CUSTOMERS.ID, Value, Quantity FROM D_TIME, D_PRODUCTS, D_CUSTOMERS, OR_VIEW WHERE D_TIME.Year = OR_VIEW.Year AND D_TIME.Season = OR_VIEW.Season AND D_TIME.Month = OR_VIEW.Month AND D_PRODUCTS.Product = OR_VIEW.Product AND D_PRODUCTS.Type = OR_VIEW.Type AND D_CUSTOMERS.Surname = OR_VIEW.Surname AND D_CUSTOMERS.Country = OR_VIEW.Country

STAR SCHEMA – Multidimensional Query

- How to create the query SALES(Country, Product,*).Value?
- We want the total sales per country and per products aggregated over <u>all years</u>.

Using the star-schema shown on the left the query turns out to be very easy

SELECT Product, Country, Sum(Values) **AS** Tot_Val_All_Year

FROM D_PRDOUCTS INNER JOIN (D_TIME INNER JOIN (D_CUSTOMERS INNER JOIN FACT_TAB ON D_CUSTOMERS.ID = FACT_TB.ID_Cr) ON D_TIME.ID = FACT_TB.ID_Tm) ON D_PRODUCTS.ID = FACT_TAB.ID_Pr) GROUP BY Product, State

ORDER BY Product, State

STAR SCHEMA - Example

- In this case the query is much more simple and it can be easily automatized (for instance using a wizard to write it)
- FACT(Dimension 1, ..., Dimension n).<Measure Quantifier>
 - <u>Dimensions as fields of the SELECT statement</u>
 - Inner join among the Fact Table (i.e., the children table in the relationship) and <u>each Dimension Tables</u> included in the query
 - <u>A grouping function operating on the <Measure Quantifier></u>
 - Fields corresponding to the <u>dimensions</u> of the query must be <u>included in</u> the GROUP BY clause

SELECT ITEMS.Code, SALESMEN.Area,

Sum(SALES.REVENUE) AS [Tot Revenue]

FROM SALESMEN INNER JOIN

(ITEMS INNER JOIN SALES ON ITEMS.ID = SALES.ItemID) ON SALESMEN.ID = SALES.SalesmanID

GROUP BY ITEMS.Code, _

SALESMEN.Area

SALES(Area, Item).Revenue

STAR SCHEMA - Example

STAR SCHEMA – Example (I)

STAR SCHEMA – Example (II)

	г		-				1		
		ID_Retailer	Retailer	City	Region	Seller			
		1	R1	Rome	Lazio	S1			
		2	R2	Rome	Lazio	S1			
	3			Milan	Lombardia	S2			
		4	R3	Milan	Lombardia	S2			
ID	D_Sale	ID_Retailer	ID_Week	ID_Item	Quantity	Total Price			
	1	1	1	1	100	100€	БАСТ		
	2	1	2	1	150	150€	FACI		
	3	3	3	4	350	350€	TABLE		
	4	4	4	4	200	200 €			
	5	2	2	2	50	120€			
	6	1	3	2	50	130€			
\checkmark									
ID_Week V	Week	Month		ID_Item	ltem	Туре	Category	Supplier	
1 Ja	an #3	January		1	11	А	C1	S1	
2 Ja	an #4	January		2	12	А	C1	S1	
3 F	eb #1	February		3	13	В	C2	S1	
4 F	eb #2	February		4	14	С	C1	S2	

STAR SCHEMA – Example (III)

- PROS

 Maximum speed to retrieve information i.e., Due to a high level of de-normalization, queries are based on single (mono level) joins

- CONS

- Redundancy
- Data structure (and representation) may not be clear
- Data uploading is time consuming and complex
- Long execution times due to redundancy

SNOW FLAKE SCHEMA – Example (I)

- It reduces the de-normalization level
- Hierarchies are made explicit, i.e., instead being the field of a Table they are transformed in additional Tables
- In addition to the Facts' tables we have:
 - Primary dimensions (hierarchy's root) Tables
 - Secondary dimensions Tables
- Primary Dimension Tables are in OTM relation with the Fact Table
- Secondary Dimensions Tables are in OTM relation with the Primary Dimension Table, root of the hierarchy to which they belong to

SNOW FLAKE SCHEME – Example (I)

SNOW FLAKE SCHEME – Example (II)

				ID_Retailer	Retailer	ID_City	Seller					
				1	R1	1	S1					
ID_Ciy	City	Region		2	R2	1	S1					
1	Rome	Lazio		3	R3	2	S2					
2	Milan	Lombardia		4	R3	2	S2					
			ID_Sale	ID_Retailer	ID_Week	ID_Item	Quantity	Total Price	FΔ	СТ		
			1	1	1	1	100	100€				
			2	1	2	1	150	150€				
			3	3	3	4	350	350€				
			4	4	4	4	200	200€				
			5	2	2	2	50	120€]			
			6	1	3	2	50	130€				
										ID_Type	Туре	Category
						<u> </u>				1	А	C1
		ID_Week	Week	Month		ID_Item	ltem	Supplier	ID_Type	2	В	C2
		1	Jan #3	January		1	11	S1	1	3	С	C1
		2	Jan #4	January		2	12	S1	1			
		3	Feb #1	February		3	13	S1	2			
		4	Feb #2	February		4	14	S2	3			

FACTS' CONSTELLATION

SNOW FLAKE SCHEMA

Useful when:

- The ratio between the cardinality of the Primary and Secondary Dimension Tables is High. In this case a considerable amount of space can be saved
- If there are shared hierarchies

PROS

- ✓ Subjects are clearly subdivided
- Better performance in case of aggregated data
- Lower sensibility with respect to variation of hierarchies over time

CONS

- Keys duplication
- Lower speed in queries execution, if secondary dimensions are needed

LOGICAL MODELS (II)

ROLAP – MOLAP – HOLAP

MOLAP → MULTI DIMENSIONAL OLAP

- Facts are implemented using a real multi-dimensional DB, with positional access;
- Queries are made using proprietary methods (MDX di Microsoft)

PRO

- High efficiency in queries execution
- Highly adherent to the conceptual model
- ✓ There is not the need to use SQL to create multidimensional queries

CONS

- Matrices are sparse; a lot of space is needed to store data
- Standards are not available, this is a hurdle for the acceptance of MOLAP
- Programmers are not very familiar with MOLAP

LOGICAL MODELS (III)

- ROLAP MOLAP HOLAP
- HOLAP → HIBRID OLAP
 - Intermediate solution between MOLAP and ROLAP
 - Data Warehouse is based on ROLAP
 - Ease of development
 - System Scalability
 - Data Marts are based on MOLAP
 - Queries' efficiency
 - Contained dimensions
 - Easiness of development (populating multi dimensional matrices with data coming from a warehouse that already implements a multi-dimensional approach is easier)
 - It requires a three levels architecture with a staging area