
DATABASE AND SQL

1

The SQL Language Part VII - Data updating and erasing

1. Introduction

Up to now we have considered, only, selection queries i.e., queries that collect data from the table of a

relational database. Selection queries are, by far, the most used ones, yet other kinds of queries do exist.

Actually, it is possible to use SQL to create a whole data base starting from scratch. However, since the basic

objects of a Data Base are created in a visual way, in this chapter we will focus exclusively on queries that can

be used to: (i) create a table, (ii) append a record to a table, (iii) modify one or more field of one or more

records and (iv) delete some records.

2. Creating Tables

In order to create a new table the following syntax must be used:

<command create table> : : =

CREATE TABLE <Table Name>

(<First Field> <Data Type> (<Dimension>) [<Kind of constraint>] [{,<Second Field > < Data Type >

(<Dimension >)[< Kind of constraint >] …}])

Where:

<Table Name> is the name given to the table;

<i-th field> is the name given to the i-th field;

<Data Type> is the type of the data that will be stored in the field;

(<dimension>) is the max length of the data contained in the field;

<Kind of constraint> is the constraint (such as unique) of the data of contained in the field.

The main kinds of constraints that can be declared are shown in Table 7.1

Tab. 7.1. Kinds Of Constraints

CONSTRAINT MEANING

NOT NULL The field cannot be null

UNIQUE Each value must be unique

PRIMARY KEY PK → It automatically implies a UNIQUE and NOT NULL constraint

FOREIGN KEY FK → It automatically implies integrity constraints

CHECK Values must fulfill some condition (for instance greater or less than)

DEFAULT A default value is defined and used to fill the field if the user leaves the field blank

DATABASE AND SQL

2

Allowed Data Types are listed in Table 7.2.

Tab. 7.2. Permitted Data Types

For instance, using the following SQL code, an empty table as the one shown in Table 7.3 is obtained:

CREATE TABLE PEOPLE

(Person_ID Integer, Primary Key, Last_Name, Text (50), First_Name, Text (50), Address, Text (250), _

 City, Text (50))

Tab.7.3. The generated PEOPLE Table

Person_ID * Last_Name First_Name Address City

Sometimes it may be useful to create a table T2 that is a copy (or a partial copy) of an existing one T1 and that

contains only a subset of the records of T1. To this aim it is sufficient to write a standard selection query adding

in the SELECT statement the INTO keywords, followed by the name given to the new table. The selection query

defines the records that have to be inserted in the new table.

DATABASE AND SQL

3

For instance the following SQL query creates a new Table called DISC_PRODUCTS that contains all the products,

registered in the main PRODUCTS table, that are not sold anymore (i.e., the discontinued ones).

SELECT PRODUCTS.ProductID, Products.ProductName, Products.UnitPrice INTO DISC_PRODUCTS

FROM PRODUCTS

WHERE PRODUCTS.Discontinued = True

Please note that, in this case, DISPROD is a partial copy of the original table, as it does not contain all the

original fields (for instance the Discontinued field is not present in DISC_PRODUCTS)

3. Add Records to an existing table

In order to add one or more records to an existing table it is sufficient to use the INSERT INTO operator. Its

syntax is the following one.

<Insert Command> : : = INSERT INTO <Table Name>

[(Fields List)] <Origin>

Where:

<Table Name> is the name of the destination table;

[(Fields List)] is a list that identifies all or some fields where data must be added;

<Origin> defines the values to be inserted.

Concerning the origin, data can be directly included in the statement or they can be taken from another table

or from another query. Let us see a couple of example to clarify this concept.

In the first case the insertion is obtained using an explicit list and in this case we have that:

<Origin> : : VALUES <(Values List)>

For example if we write:

INSER INTO CATEGORIES (ID, Name, Description)

VALUES (24, ᶦNew_Categoryᶦ, Null)

A new record will be inserted in the CATEGORIES table. Specifically the following value will be used to fill its

fields: ID = 24, Name = New_Category and Description = Null.

Also note that, as shown in the syntax the fields list is optional. If the list is omitted, the values will be inserted,

sequentially, from the first to the last field. So, the query above could also have been written as:

INSER INTO CATEGORIES

VALUES (24, ᶦNew_Categoryᶦ, Null)

DATABASE AND SQL

4

Clearly, the fields list becomes mandatory if:

• The value list does not includes values for all the fields of the table (it is obvious that if some fields are

not included they must be able to accept null values);

• Specifies values in an order that differs from the one of the fields of the table.

As an alternative it is possible to add records starting from records of a table or of a query. In this case <Origin>

will be substituted by the name of a Table (i.e., all records will be copied) or by a selection query. In either case

the destination table must have, exactly, the same structure of the table (or query) from which data are

collected. For instance, the following query add to the NO_DESCR table all the records of the CATEGORIES table

having a null description:

INSER INTO NODESCR

SELECT *

FROM CATEGORIES

WHERE IsNull(Description)

4. Updating one or more fields

The UPDATE keywords can be used to modify records that are already stored in a table of a relational data

base. Its syntax is as follows:

<Update Command> : : = UPDATE <Table Name>

SET <Field Name> = <Expression>

[{,Field Name> = <Expression>} …]

[WHERE <Condition>]

Where:

< Table Name > is the name of the Table to be updated;

SET <Field Name> = <Expression> identifies the fields and the values to be updated;

[WHERE <Condition>] identifies the records to be updated; if omitted all records will be modified.

Also note that expression can be a single value, an algebraic expression or the result of a scalar subquery.

An example of a simple expression is shown below; the query modify the name of the 23th category and delete

its description:

UPDATE CATEGORIES

SET Name = 'Seaweed', Description = NULL

WHERE Category_ID = 23

DATABASE AND SQL

5

Conversely, the following query duplicates the price of the products that are sold at 10€ or less and it also

homogenizes (to the minimum) their reorder level; the last point is made using a sub-query.

UPDATE PRODUCTS

SET Unit_Price = 2*Unit_Price, Reorder_Level = (SELECT MIN(Reorder_Level) FROM PRODUCTS)

WHERE Unit_Price <= 10

We conclude this section with a last example. Here a subquery is used to define the products whose price must

be updated (to 10€):

UPDATE PRODUCTS

SET Unit_Price = 10

WHERE Unit_Price = (SELECT MIN(Unit_Price) FROM PRODUCTS)

5. Deleting one or more records

The DELETE keyword makes it possible to cancel one or more records of a table. Its syntax is the following one:

<Delete Command> : : = DELETE FROM <Table Name>

[WHERE <Condition>]

The elements of the syntax have the same meaning as before; for instance, the following query deletes the

record of the product with the minimum price (or the records in case of products with the same minimum

price):

DELETE FROM PRODUCTS

WHERE Unit_Price = (SELECT MIN(UnitPrice) FROM PRODUCTS)

DATABASE AND SQL

6

6. A VBA EXAMPLE

Suppose you have a PRODUCTS table containing the information of all the products that are marketed, at

present, by a company. This table also have a field called “Discontinued” containing a Boolean field: if the value

is true the corresponding product is discontinued and so it is no longer available for sale.

Once in a while it may be wise to clean the PRODUCTS table, getting rid of all discontinued products; yet in a

Data Base data should never be deleted (data always have some hidden value), so rather than cancelling out

the records of the discontinued products (of the PRODUCTS table) we will append them in a second table called

DISCONTINUED PRODUCTS.

To this aim we will make use of the following queries:

' Query Name = Create Table and Append

SELECT Products.ProductID, Products.ProductName, Products.UnitPrice INTO [Discontinued Products]

FROM Products

WHERE Products.Discontinued =True

' Query Name = Append

INSERT INTO [Discontinued Products] (ProductID, ProductName, UnitPrice)

SELECT Products.ProductID, Products.ProductName, Products.UnitPrice

FROM Products

WHERE Products.Discontinued =True

' Query Name = Delete

DELETE FROM Products

WHERE Products.Discontinued =True

Specifically:

• The first query will be used only once when the PRODUCTS table is “cleaned” for the very first time.

This query, indeed, create the DISCONTINUED PRODUCTS table and fills it with all the records of all

PRODUCTS table that are labelled as “discontinued”;

• The second query will be used starting from the second update, to append to the DISCONTINUED

PRODUCTS table the records, of the PRODUCTS table, labelled as “discontinued”;

• The third query will be launched after all the discontinued products have been appended in the

DISCONTINUED PRODUCTS table, to delete the corresponding records from the main PRODUCTS table.

DATABASE AND SQL

7

These queries will be launched using the following Form (Figure 7.1)

Fig. 7.1. The Append form

Briefly, its functioning is the following one:

• The user can select between Discontinued Products and Products in the list Box;

• The list box is filled at start up with the name of some specific Tables among the ones available in the

DB. Specifically, these are Products and Discontinued Products.

• If Discontinued Products is selected, both command buttons are available:

o If the user clicks on Update/Create, all the discontinued products are moved from Products to

Discontinued Products;

o If the user clicks on Erase Records the Discontinued Table is cancelled (this should never been

made; this option has been included just for didactical reasons);

o If Products is selected, only the Update/Create button is activated; as before, if the

Discontinued Products table already exist, clicking the button will move all the discontinued

products from Products to Discontinued Products. Otherwise, before doing that, also the

Discontinued Table will be created.

DATABASE AND SQL

8

The full VBA code is shown below:

Private Sub CmdAppend_Click()

 DoCmd.SetWarnings False ' No warnings when we execute the query

 If Find_Disc Then ' If the Discontinued Table has been already created, Find_Disc is a function defined next

 DoCmd.OpenQuery "Append"

 Else

 DoCmd.OpenQuery "Create Table and Append" ' The table has to be made

 CmdDelete.Enabled = True

 End If

 DoCmd.OpenQuery "Delete" 'Discontinued products are deleted form the PRODUCTS Table

 DoCmd.SetWarnings True

 Call Find_Tables ' A procedure that searches all the tables of the DB and use them to fill the List Box

End Sub

Private Sub CmdDelete_Click()

 DoCmd.DeleteObject acTable, "Discontinued Products" ' This delete the Discontinued Product table

 Call Find_Tables

 CmdDelete.Enabled = False

End Sub

Private Sub ComboTables_AfterUpdate()

 If Me.ComboTables = "Discontinued Products" Then

 CmdDelete.Enabled = True

 Else

 CmdDelete.Enabled = False

 End If

End Sub

Private Sub Form_Load()

Dim i As Integer

 Call Find_Tables ' To populate the list box

 If Me.ComboTables = "Discontinued Products" Then

 CmdDelete.Enabled = True

 Else

 CmdDelete.Enabled = False

 End If

End Sub

DATABASE AND SQL

9

Two functions are used to populate the List Box and to check if the Discontinued Products Table has already

been created (note that the result of this check will determine the type of update query to be invoked).

The first function explores TableDef (the collection of all the Tables of the Data Base) to see which tables are

available; the second one searches through the List-Values of the List Box to see if the “Discontinued Products”

Table has already been added or not.

The full code is shown below:

Public Sub Find_Tables()

Dim TblNames As String

Dim F As Form

Set F = Forms("Append") ' The form we are operating on

' To keep lines below short, we’ll store the quotation mark as a variable named QM Dim QM As String

TblNames = ""

QM = Chr(34) ' this is "

Dim db As DAO.Database

Dim tdf As DAO.TableDef

Set db = CurrentDb

 For Each tdf In db.TableDefs ' ignore system and temporary tables

 If Not (tdf.Name Like "MSys*" Or tdf.Name Like "~*" Or tdf.Name = "USysApplicationLog") Then

 TblNames = TblNames & QM & tdf.Name & QM & ";" 'Creates a list of Tables

 End If

 Next tdf

 With F!ComboTables

 .RowSourceType = "Value List" 'Elements in the List Box are passed as a List

 .RowSource = TblNames ' The previously created list

 .Value = .ItemData(0) ' Select the first value of the list

 End With

Set tdf = Nothing

Set db = Nothing

Set F = Nothing

End Sub

Public Function Find_Disc() As Boolean

Dim F As Form

Set F = Forms("Append")

Find_Disc = False

If F.ComboTables.ListCount > 0 Then

 For i = 0 To F.ComboTables.ListCount - 1 ' Check the names in the List Box to see if Discontinued has already added

 If F.ComboTables.ItemData(i) = "Discontinued Products" Then

 Find_Disc = True

 End If

 Next i

 End If

Set F = Nothing

End Function

DATABASE AND SQL

10

Also note that the a particular string is created with the following instruction (included in the For Each loop):

TblNames = TblNames & QM & tdf.Name & QM & ";" 'Creates a list of Tables

Since QM contains a quotation marks (i.e., the symbol)̎ a string like the following one will be generated:

“[Name of Table 1]”; “[Name of Table 2]”; … ; “[Name of Table n]”;

In this peculiar form, this string can be used (as is) to populate the values of the List Box. This is made with the

following code:

 With F!ComboTables

 .RowSourceType = "Value List" 'Elements in the List_Box are passed as a List

 .RowSource = TblNames ' The previously created list

 .Value = .ItemData(0) ' Select the first value of the list

 End With

