RELATIONAL DATABASE AND SQL LANGUAGE

The SQL Language Part Il - How to create queries operating on several tables

1. Introduction
Up to know we have generated queries that operate on a single table. More specifically we have seen that:
e The <Selection List> makes it possible to realize a Projection;
e The DISTINCT and the WHERE condition make it possible to realize a Selection;
e The AS operator makes it possible to realize a renaming;
e The GROUP BY and HAVING operators make it possible to realize what, in relational algebra, is called an
aggregation;
We still need to see a couple of basic operator (i.e., the UNION and the SUBTRACTION), but we will do it later.

Now we want to focus on the way in which the JOIN operator is implemented by the SQL language. In this way

we will be able to create complex queries operating on more than one table. Clearly, the hypothesis is made that
all the tables we will be operating on are linked by a generic or, most of the times, by an OTM relation with

integrity constraint.

2. Inner Join

Let us consider two Table T; and T, in OTM relation, with T; being the father table. Let PK; be the PK of T; and
FK, be the forward key of T.

If we want to create a (non-normalized) table showing all the data contained in T and all the data contained in
T,, relatively to the records of T, that have one or more correspondence in T; we need to:

e |ndicate all the fields of both tables in the Selection list

e Indicate the name of both Tables in the FROM clause

e Explicit, as if it were a logic condition, the OTM relation between T; and T,

This is shown in the following query:

SELECT T..*,T,.*

FROM T,, T,

WHERE T1.PK; = T».FK;

ORDER BY T;.Field:
Since we are operating on two different tables, in order to indicate a specific field it is advisable to make
reference, explicitly, to the table to which the record belongs to. For instance, the field F; (used to sort in
ascending order the records of the output table) belongs to table T;1 and so it is referred as Ti.Field;; the dot

operator (.) is used to separate the name of the table from the name of the field and indicates “ownership”, i.e.,

RELATIONAL DATABASE AND SQL LANGUAGE

the field belongs to the table. This is not mandatory but it is certainly advisable. Clearly, if a field with the same

record exists in both tables, then the use of the dot operator becomes mandatory.

Also note that the same also apply to the ALL (*) operator, as for T..* and T,.*

Lastly we observe that the OTM relation is logically described in the following way:

WHERE T1.PK1 = T,.FK;
This statement assures that only the records of the “son” table that have a correspondence in the “father” one
will be returned by the query.
In a more formal way we can say that the OTM relation is expressed by the following logical condition:

Name_of_Tabel;,.Name_Common_Field; > = Name_of_Table..Name_Common_Field;,,

As an alternative it is possible to use a specific SQL syntax to operate a JOIN on two tables in OTM relation, as

shown below:
<Command INNER|NATURAL JOIN> : : =
< Reference to the father table> [NATUAL] INNER JOIN <reference to the son table>
[ON <join condition> | USING <join fields list>]

It is important to note that the INNER JOIN command must be placed in the FROM statement and not, as before

in the WHERE condition.

Also note that, as it can be seen, SQL differentiates among the INNER and the NATURAL JOIN. In the first case all

the fields of both tables are returned exactly as in the previous query where we wrote SELECT T..*T..%;

conversely using the keyword NATURAL JOIN common fields (i.e., the forward key of the son table) will not be

returned.
Concerning the definition of the join, two possibilities are allowed:

e When the JOIN is based on the use of the ON operator, one must specify the logical condition defying

the join between the tables;

e When the JOIN is based on the USING operator, one must list the name of the fields (i.e., the PK of the

father table and the FK of the son table) on which the join is made.

Owing to ehat we’ve just said, the join-query that we made above, can also be implemented in the following
ways:

SELECT T..*,T,.*

FROM T1 INNER JOIN T, ON T1.PK; = T».FK;

ORDER BY T;.Field,

RELATIONAL DATABASE AND SQL LANGUAGE

SELECT T1.*,T2.*
FROM T; INNER JOIN T, USING T1.PKj, T,.FK;
ORDER BY T.Field;

When the Join is made between two tables in OTM relation, the choice between ON and USING is just a matter

of preference. Conversely, if the Join is made between tables that have a “generic relation”, it is advisable to

make use of the ON operator; indeed, this makes it possible to define the join condition using additional logical

operators, rather than the standard equality one (=).

Anyhow, it is always possible to include additional logical condition in the WHERE clause. For instance,

considering once again the AUTHORS and the BOOKS tables introduced in the previous chapter, we could be
interested to see all the books written by Joyce. To this aim we could use, at our choice, any one of the following

queries (that return a vector containing all the books written by Joyce):

SELECT BOOKS.Title

FROM AUTHORS, BOOKS

WHERE (AUTHORS.ID_Authors = BOOKS.ID_Autors) AND (AUTHORS.Surname = 'Joyce')
ORDER BY BOOKS.Title

SELECT BOOKS.Title

FROM AUTHORS INNER JOIN BOOKS ON AUTHORS.ID_Authors = BOOKS.ID_Autors
WHERE AUTHORS.Surname = 'Joyce'

ORDER BY BOOKS.Title

SELECT BOOKS.Title

FROM AUTHORS INNER JOIN BOOKS USING AUTHORS.ID_Authors, BOOKS.ID_Autors
WHERE AUTHORS.Surname = 'Joyce'

ORDER BY BOOKS.Title

3. Inner Join among more than two tables
An inner join can be defined even if there are several tables linked by OTM relations. The logic does not change.
Indeed, it is sufficient to include all the Tables in the FROM clause and, next, to explicit all the OTM relations (i.e.,

the couples of primary and forward keys) in the FROM or in the WHERE clause.

RELATIONAL DATABASE AND SQL LANGUAGE

Let us make an example to clarify this concept. In Figure 5.1 there are two tables, ORDERS and PRODUCTS, which
are linked through a MTM relations. Since the relation is of the MTM type (i.e., an order may contain several
products and the same product could have been ordered more than once) a bridge table, namely ORDER
DETAILS, is used to split the relation into two OTM relations. A last table, namely CUSTOMERS has an OTM

relation with the ORDERS table because, evidently, each customer could have made more than one order.

Customers Orders Order Details Products

* s * - * * s

% CustomerlD ;_ @ orderip = @ orderip Jvl— # productiD
MName CustomerID @ productiD = ProductMName
Surname AccountRep r UnitPrice LatinMame =
Address = OrderDate Quantity SupplierID
City ShippedDate Discount CategorylD
Regian ShippedBy QuantityPerUnit
PostalCode Freight UnitPrice
Country - ShipName A4 UnitsInStock -

Fig. 5.1. An example of four tables linked by OTM relations

We want to see the composition of all the orders that have been issued in a certain period of time and their total
value. We also want to know who made the order.
A possible solution is as follows:
SELECT CUSTOMERS.Surname, PRODUCTS.ProductName, ORDERS.OrderDate, _
[ORDER DETAILS].Quantity*[ORDER DETAILS].UnitPrice*(1-[ORDER DETAILS].Discount) AS Price
FROM PRODUCTS INNER JOIN ((CUSTOMERS INNER JOIN ORDERS ON CUSTOMERS.CustomeriD = _
ORDERS.CustomerID) INNER JOIN [ORDER DETAILS] ON ORDERS.OrderID = [ORDER DETAILS].OrderID) _
ON PRODUCTS.ProductID = [ORDER DETAILS].ProductID
WHERE (Orders.OrderDate>=[Date In]) AND (Orders.OrderDate<=[Date Out])
ORDER BY Orders.OrderDate

In this case:
e Priceis a calculated field
e To filter orders belonging to a certain period the condition Orders.OrderDate>=[Date In] AND

Orders.OrderDate <=[Date Out] is used. Please note that, in this case, the brackets have a different

meaning, as they define an input provided by the user, i.e., when running this query, the software will

ask the user for aninitial and for and ending date. Specifically, anytime something written inside brackets

is not recognized by the software (i.e., it is neither a keyword nor a field or a table), it is interpreted as a

parametric input;

RELATIONAL DATABASE AND SQL LANGUAGE

e The set of the relations (or the relational path), is defined in the FROM clause using the INNER JOIN ON
syntax. More specifically, as indicated by the parentheses:
o Afirst Join, let us call it J;, is made between CUSTOMERS and ORDERS;
o AsecondJoin, let us call it J,, is made between J; and [ORDER DETAILS];
o Finally, a third and last join is made between PRODUCTS and Js.

Conversely, including the join condition in the WHERE clause, the query can be written in the following way:
SELECT CUSTOMERS.Surname, PRODUCTS.ProductName, ORDERS.OrderDate, _
[ORDER DETAILS].Quantity*[ORDER DETAILS].UnitPrice*(1-[ORDER DETAILS].Discount) AS Price

FROM CUSTOMERS, ORDERS, [ORDERS DETAILS], PRODUCTS
WHERE (CUSTOMERS.CustomerID = ORDERS.CustomerID) AND (ORDERS.OrderID = _

[ORDER DETAILS].OrderID) AND (= [ORDER DETAILS].ProductID = PRODUCTS.ProductID) _

AND (Orders.OrderDate>=[Date In]) AND (Orders.OrderDate<=[Date Out])
ORDER BY Orders.OrderDate

Note that in this case the join condition is obtained by concatenating three distinct AND condition, that is one
AND condition for each one of the three OTM relations among the four original tables.

A possible outcome (inserting dates form 01/01/2010 t0 31/12/2010) is shown in Table 5.1

Tab.5.1

A possible outcome of the multiple join

Surname - Product Name » | OrderDate - Price -
Lang Crushed rock 05/01/2010 62,5
Ackerman Douglas Fir 05/01/2010 18,75
Ackerman Fortune Rhododendron 05/01/2010 43,199999928
Lang Compost bin 05/01/2010 58
Browne Golden Larch 06/01/2010 27
Browne Lawn cart 06/01/2010 76,499999873
Khanna Bat box 06/01/2010 44,25
Koch Compost bin 08/01/2010 58
Koch GrowGood potting soil 08/01/2010 6,35
Koch QwikRoot 08/01/2010 18
Koch Grass rake 08/01/2010 11,95
Ramos Cactus sand potting mi» 12/01/2010 9
Oveson Bat box 12/01/2010 29,5
Cox Blackberries 12/01/2010 27
Cox Gooseberries 12/01/2010 22,5
Thirunavukkara Pea gravel 12/01/2010 72
Cox Ambrosia 12/01/2010 6,25
Miller Grandiflora Hydrangea: 13/01/2010 40

Note that, sometimes, some records have the same data and the same customer. These are not distinct orders,

but lines of the same order issued in a certain date by a certain customer. Thus, it could be useful to group lines

in a single order.

A possibility could be that to create a single query performing at the same times the joins and the grouping
operator. However, the query would become extremely long and difficult to be understood. Instead, it is easier

to make a query that operates on the previous query (the one corresponding to Fig. 5.2). More precisely, if we
5

RELATIONAL DATABASE AND SQL LANGUAGE

save the query as JOIN _QUERY we can use it as a new table and we can call it directly in the FROM statement of

a new guery. An example follows:
SELECT Surname, OrderDate, SUM(Price)
FROM JOIN_QUERY
GROUP BY Surname, OrderDate
Please note that the use of the SUM function, that made it possible to sum up all the lines belonging to the same

order. Also note the use of both Surname and OrderDate in the GROUP BY statement. This is heeded to avoid

that orders made by the same customer in different date could be aggregated in a single record.

4, Outer Join

As we have said talking about relational algebra, when executing an Inner/Natural join, all the records of table

T, that do not have any correspondence with records of table T, will get lost. For instance if we add a new

category (let us call it “new”) in the CATEGORIES table, if we execute an INNER JOIN on CUSTOMERS and
CATEGORIES, the “new” category will not be displayed.
So, if we wanted to see all the records of both tables, we would execute an OUTER JOIN instead of an INNER one.
Clearly, as in relational algebra, also SQL implements three kinds of OUTER JOIN:
e LEFT OUTERJOIN
e RIGHT OUTER JOIN
e FULLOUTERJOIN
The full SQL syntax does not change very much, as shown below:
<OUTER JOIN Command>: : =
< Name of first Table> [NATURAL] {LEFT | RIGHT | FULL} [OUTER] JOIN <Name of second table>
[ON <join condition> | USING <list of join fields>]

A simple example is shown below (see Table 5.2):
SELECT PRODUCTS.ProductName, CATEGORIES.CategoryName
FROM CATEGORIES LEFT OUTER JOIN PRODUCTS _
_ ON CATEGORIES.CategorylD = PRODUCTS.CategoryID

RELATIONAL DATABASE AND SQL LANGUAGE

Tab. 5.2.

LEFT OUTER JOIN
Category Name « Product Name -
Tools Revolving sprinkler
Tools Shade fencing &'
Berry bushes Currant
Berry bushes Red Raspberries
Berry bushes Blackberries
Berry bushes Gooseberries
Berry bushes Strawberries
Shrubs/hedges Weeping Forsythia
Shrubs/hedges Winterberry
Shrubs/hedges Maorrow Honeysuckle
Shrubs/hedges Beautybush
Shrubs/hedges Hedge trimmer 18"
Shrubs/hedges Hedge trimmer 16"
Shrubs/hedges Hedge shears 10"
New

It is interesting to note that, in Access, a LEFT OUTER JOIN is graphically displayed as shown in Figure 5.2:

Categaories

*

i CategorylD
CategoryMame
Description

Products
% ProductiD
ProductMame =

4

Latinhame
SupplierlD
CategorylD
QuantityPerUnit | ™

Fig. 5.2. LEFT OUTER JOIN

We also note that the FULL OUTER JOIN is not implemented by Access. However, it can be easily reproduced by

making an UNION of a LEFT and of a RIGHT OUTE JOIN executed on the same input tables.

We conclude this section mentioning the way in which a simple Cartesian Product can be made. This is very

simple, indeed it is sufficient to write a standard Select Query operating on two tables without expressing any

join condition, as in the example shown below:

SELECT T..*, T,.*
FROM T,, T,

As an alternative, it is also possible to use the CROSS JOIN operator:

SELECT T..*, T,.*
FROM T1 CROSS JOIN T,

RELATIONAL DATABASE AND SQL LANGUAGE

5. Self Join

A JOIN executed on a single table, characterized by a SRR, is called SELF JOIN.

Let us make a classical example. Suppose we want to know all the products of the PRODUCTS table that have
exactly the same price. How can we do so?

First of all we need to create a duplicate of the PRODUCTS table (that we could call as PRODUCTS_1) and, next,

we need to define a join relation between these two identical tables. This is shown in the SQL below:
SELECT PRODUCTS.ProductName, PRODUCTS.UnitPrice, PRODUCTS 1.ProductName, _
PRODUCTS_1.UnitPrice
FROM PRODUCTS, PRODUCTS AS PRODUCTS_1
WHERE PRODUCTS.UnitPrice = PRODUCTS_1.UnitPrice

Note that the copy of the table is created in the FROM clause using the AS operator. This is called Aliasing

technique. Formally, its syntax is the following one:
<Aliasing> : : =
FROM <original name> AS <new name>

Also note that the join condition is made on the UnitPrice Field. Indeed we want all the couples of products

having the same price.
Lastly, we note that, as an alternative we could have written the query also in the following way:
SELECT PRODUCTS.ProductName, PRODUCTS.UnitPrice, PRODUCTS_1.ProductName, _
PRODUCTS_1.UnitPrice
FROM PRODUCTS INNER JOIN PRODUCTS AS PRODUCTS_1 ON _
PRODUCTS.UnitPrice = PRODUCTS _1.UnitPrice

Unfortunately, in both case we get a result that is not fully satisfactory, as shown in Table 5.3. As it can be seen,

there are records that have the same product repeated twice. This is correct, because each product costs as

itself. Thus, to get rid of duplicated field it is sufficient to filter the returned records. A possible way is the

following one:

WHERE PRODUCTS.ProductID > PRODUCTS_1.ProductID.

RELATIONAL DATABASE AND SQL LANGUAGE

Tab. 5.3.
Self-Join with redundant records

Product Name = Unit Price =t Product Name = Unit Price =t
Clay flowerpot 8" 51,75 Clay flowerpot 8" 51,75
Lavender $2,25 Lavender $2,25
Beebalm $2,75 Beebalm $2,75
Gardening gloves (5) $2,95 Gardening gloves (L) 52,95
Gardening gloves (L) 52,95 Gardening gloves (M) 52,95
Gardening gloves (M) $2,95 Gardening gloves (M) 52,95
Gardening gloves (S) $2,95 Gardening gloves (M) $2,95
Hose saver $2,95 Gardening gloves (M) 52,95
Gardening gloves (L) $2,95 Gardening gloves (S) $2,95
Gardening gloves (L) $2,95 Gardening gloves (L) 52,95
Gardening gloves (S) $2,95 Gardening gloves (S) $2,95

Thus the full query becomes:
SELECT PRODUCTS.ProductName, PRODUCTS.UnitPrice, PRODUCTS_1.ProductName, _
PRODUCTS_1.UnitPrice
FROM PRODUCTS, PRODUCTS AS PRODUCTS_1
WHERE PRODUCTS.UnitPrice = PRODUCTS_1.UnitPrice AND PROUCTS.UnitPrice > PRODUCTS_1.UnitPrice

Most of the times a Self Join is made to create a hierarchy, as in the case of an organizational chart. An example

is shown in Table 5.4.

Tab. 5.4.
An example of SRR
ID | Last Name Role Chief
1 |Red CO Null
2 |Green Commercial Manager 1
3 |White Production Manager 1
4 |Brown Seller 2
5 |[Blond Department Head 3
6 |Wolfstail Worker 5
7 |Pizzotti Worker 5
8 [Rolling Seller 2

In this case the organizational table is very simple, as in the hierarchy there are only three distinct levels i.e., a
worker respond to the Department Head that respond to the Production Manager that respond to the Chief

Officer. Since there are three levels, if we wanted to build the whole organizational table we should use three

Aliasing Tables. However, in this case, we should limit the query to the use of two aliasing tables (and so only

two level of the hierarchy will be generated)

RELATIONAL DATABASE AND SQL LANGUAGE

Once we have generated the aliasing tables we need to specify the Inner Join Condition and the join fields that,

in this case, correspond to the ID and to the Chief fields. Also, since some records (typically one) may have no

correspondences in the other tables we need to use a LEFT join, so as to return also those people that are at the

vertex of the hierarchy and that do not have a chief.

Owing to what we said above, the resulting query is as follows

SELECT ORG_CHART.[Last Name], ORG_CHART.Role, Nz(LEV_I.[Last Name], "Nobody") AS [Responds to:], _
Nz(LEV_Il.[Last Name], "Nobody") AS [Who Responds to:]

FROM (ORG_CHART LEFT JOIN ORG_CHART AS LEV_| ON ORG_CHART.Chief= LEV_LI.ID)

LEFT JOIN ORG_CHART AS LEV_II ON LEV_1.Chief = LEV_II.ID

Please note the use of the Null-Zero function NZ(Field Name, [Substitution Field]). This function takes two inputs.

the first one is mandatory and is the field that must be evaluated. The second one, optional, is the value that will

be returned when the value of the first field is null. If this optional value is not passed as input, then in case a null

field the NZ function returns a zero. That is the reason why the function is called Null-Zero.

The query, made in Access, is visually shown by Fig. 5.3.

ORG_CHART LEV I LEV_IT
(s (s (s
Last Mame Last Mame Last Mame
Role Role Role
Chief Chief Chief

Fig. 5.3. Aliasing and Left Join to recreate a hierarchy

By executing the query the following result is obtained:

Tab. 5.5.

A query based on a SRR
Last Name: Role Responds To: Who responds To:
Red co Nobody Nobody
Green Marketing Manager Red Nobody
White Production Manager Redi Nobody
Brown Sellert Green Red
Blond Department’s Head White Redi
WolfsTail Worker Blond White
Pizzotti Worker Blond White
Rolling Seller Green Red

10

RELATIONAL DATABASE AND SQL LANGUAGE

6. Other operators
We conclude this section presenting three more useful operators: UNION, INTERSECT and EXCEPT
Union

The UNION performs the union of two homologous tables. Its syntax is as follows:

<First Select Command> UNION [ALL]

<Second Select Command>

The <First Select Command> and <Second Select Command> may be two Select queries that return, as output,
two compatible table, or they may be a reference to a saved query.
ALL is an optional operator and it is used to return also duplicated records. Indeed, if ALL is not explicitly used,

the UNION operator returns, exclusively, non-duplicated records.

Except and Intersect

EXCEPT implements, in SQL, the Difference operator of relational algebra.

The syntax is similar to that of the UNION operator, as shown below:
<First Select Command> EXCEPT [ALL]

<Second Select Command>

However, this time, the ALL operator has a slightly different meaning. Let us suppose that Except is made on T
and T». If T; and T, have a common record r that recurs n times in T; and m times in T, then in the output table

<T; EXCEPT ALL T,> the common record r will be repeated (n-m) times.

INTERSECT implements, in SQL, the Intersection operator of relational algebra.

The syntax is similar to that of the UNION operator, as shown below:
<First Select Command> INTERSECT [ALL]

<Second Select Command>

However, this time, the ALL operator has a slightly different meaning: if it is used all duplicated records will be

displayed.

We conclude this section showing some simple query used as example. The first query is used to show all the
items for which one Work Order (WO), at least, has been generated, i.e., the items that have been manufactured

at least once.

11

RELATIONAL DATABASE AND SQL LANGUAGE

SELECT ProductID

FROM PRODUCTS

INTERSECT

SELECT ProductID

FROM WORK_ORDERS
Conversely, if we were interested in the items that have never been manufactured, the following query should
be written:

SELECT ProductID

FROM PRODUCTS

EXCEPT

SELECT ProductID

FROM WORK_ORDERS

Let us consider one more query:

SELECT ProductID

FROM WORK_ORDERS

EXCEPT

SELECT ProductID

FROM PRODUCTS
With respect to the previous one, only the order of the tables has changed. However, if we execute this query
the output is an empty set. This result is not surprising as all Work orders must be associated to an Item. So it is

not possible to find a WO of an item that is not present in the product’s catalogue.

Unfortunately, Access does implement neither the EXCEPT nor the INTERSECT operator. However, these

operators can be mimicked using some simple tricks. For example to get all the products that have never been

manufactured we could write a concatenate query as the following one:
SELECT ProductID
FROM PRODUCTS
WHERE ProductIiD NOT IN(SELECT ProductID FROM WORK_ORDERS)
Obviously the INTERSECT operator can be obtained in a similar way, provided that the NOT IN operator is

substituted by the IN operator.

1 Concatenated queries are the topics of the following chapter

12

