
RELATIONAL DATABASE AND SQL LANGUAGE

1

Relational Algebra

1. Introduction

Data manipulation within a RDBMS is done, mainly, using Relational Algebra (RA). In short, relational algebra

operates on entities and relationships as conventional algebra operates on numbers. Typically, each relational

operation defines new entities or new relationships (new tables) on which one can carry out editing,

searching, aggregation and consultation activities.

We can say that, basically, the key roles played by RA are the following two:

• Data modelling and data analysis;

• Define the basis of query languages needed to interrogate a RDB.

The relational algebra operators can be classified into basic and derivative operators. The first ones make it

possible to perform almost all the main operations needed to filter and to select data within a relational

scheme. The second ones are used to simplify the execution of complex operations that, otherwise, would

require the joint use of different basic operator.

Basic Operators Main Derivative Operators

• Projection

• Selection

• Cartesian Product

• Renaming

• Union

• Difference

• Inner Join

• Semi Join

• Outer Join

• Intersection

• Division

2. Basic Operators

Projection

Let us consider a Table T made of r records of n fields. A projection based on a set (m < n) of attributes

performed on T returns a table TP with the same number (r) of records, but with a reduced number (m < n) of

fields. Specifically, only the m fields (or attributes) specified by the projection operator will be shown in the

records of TP. For example, by operating a projection based on the attributes {Surname, Job}, Table 3.1 (a) is

converted in Table 3.1 (b), as shown below:

We note that Table obtained using relational algebra operators does not have to be normalized. For instance,

in Table 3.1(b) the primary key is missing.

RELATIONAL DATABASE AND SQL LANGUAGE

2

Tab. 3.1 (a) Original Table

Id_Employee (PK) Surname Job … Respond To (FK)

1 Red Nurseryman … r
2 Green Nurseryman … r
3 Beagle Clerk … 4
4 Hart Owner Null
… … … … …
R Doe Chief Nurseryman … 4

Tab. 3.1 (b)
 Derived table using {Surname, Job} as projection attributes

Surname Job

Red Nurseryman
Green Nurseryman

Beagle Clerk
Hart Chief Nurseryman
… …
Doe Owner

Selection

Let us consider a Table T made of r records of n fields. A selection based on m logical condition performed on T

returns a table TS with a reduced number (k  r) of records, each one with the original number n of fields.

Specifically, only the k records that meet all the m logical conditions will be displayed in the derived table TS.

For example, if we consider Tab. 3.1 (a) once again, a selection based on the following logical condition

{Respond to = Null} generates Tab. 3.1 (c).

Tab. 3.1 (c)
Derived table using {Respond To = Null} as logical criteria of a selection operation

Id_Employee (PK) Surname Job … Respond To (FK)

4 Hart Owner Null

As it can be seen, in this case, the output coincides with a single record (i.e., k = 1), because there is only one

boss (the owner) of the shop.

Cartesian product

The Cartesian product is a binary operation, in that it operates on two different input tables and returns a third

table as output. Let us consider a Table T1 made of r1 records of n fields and a Table T2 made of r2 records of m

fields. By operating a Cartesian product between T1 and T2 a new table TCP with r1  r2 records of (n + m) fields is

obtained. Specifically, the values of the first n fields correspond to the values of a record of T1 and the value of

RELATIONAL DATABASE AND SQL LANGUAGE

3

the last m fields correspond to the values of a record of T2. In other word by performing a Cartesian product

each record of T1 is joined with each record of T2. An example concerning an AUTHORS and BOOKS table

follows.

Tab. 3.2 (a) AUTHORS Table

Id _Author Surname Nationality Language

1 Dante Italian Vulgar Italian
2 Collodi Italian Tuscan Italian
3 Joyce Irish English

Tab. 3.2 (b) BOOKS table

Id _Author Id_Book Title

1 1 Divina Commedia
1 2 De Vulgari Eloquentia
3 3 Ulisse
3 4 Finnegans Wake
2 5 Le avventure di Pinocchio

Tab. 3.2 (c)

Cartesian Product performed on AUTHORS and BOOKS tables
Id_Author Surname Nationality Language Id_Author Id_Book Title

1 Dante Italian Vulgar Italian 1 1 Divina Commedia
2 Collodi Italian Tuscan Italian 1 1 Divina Commedia
3 Joyce Irish English 1 1 Divina Commedia
1 Dante Italian Vulgar Italian 1 2 De Vulgari Eloquentia
2 Collodi Italian Tuscan Italian 1 2 De Vulgari Eloquentia
3 Joyce Irish English 1 2 De Vulgari Eloquentia
1 Dante Italian Vulgar Italian 3 3 Ulisse
2 Collodi Italian Tuscan Italian 3 3 Ulisse
3 Joyce Irish English 3 3 Ulisse
1 Dante Italian Vulgar Italian 3 4 Finnegans Wake
2 Collodi Italian Tuscan Italian 3 4 Finnegans Wake
3 Joyce Irish English 3 4 Finnegans Wake
1 Dante Italian Vulgar Italian 2 5 Le avventure di Pinocchio
2 Collodi Italian Tuscan Italian 2 5 Le avventure di Pinocchio
3 Joyce Irish English 2 5 Le avventure di Pinocchio

As it can be seen, since r1 = 3 and r2 = 5, a total of 15 records have been generated. Also, since n = 4 and m = 3,

the new generated records are made of 7 fields.

It is important to note that this is just a relational operation, there is no logic in the obtained table, as most of

the generated records do not have any sense at all (for instance Dante did not write either Finnegans Wake or

Le avventure di Pinocchio). Yet, as we will see later, the Cartesian Product is extremely useful to perform

queries operating on more than a single table.

RELATIONAL DATABASE AND SQL LANGUAGE

4

Renaming

Renaming allows one to modify the columns’ headings of a certain Table. To this aim, it is sufficient to pass, as

input, a list of attributes to be used as new column headings and to specify the table and the columns that

must be renamed.

Union

Union is a binary operation, in that it operates on two different input tables and returns a third table as

output. Let us consider a Table T1 and a Table T2. The union performed on T1 and on T2 returns a third Table T3

obtained making the union of all the records of the original tables. In other words, if T1 has r1 records and T2

has r2 records, then T3 will have r3 = r1 + r2 records, the first r3 are those of T1 and the last r2 are those of T2.

Obviously, for this operation to be possible, it is necessary that the records of T1 have the same number of

fields as the records of T2. Also, each field of T1 and T2 must contain the same data type - defined on the same

domain (or on the same eligibility subsets, if there are conditions and validation rules) - and there must be no

duplication of the primary keys, in full compliance with referential integrity constraints.

A simple example is shown below:

Tab. 3.3 (a) Table T1

ID_A (PK) Value

A1 12000
A2 15000
A3 10000
… ….

A100 500

Tab. 3.3 (b) Table T2

ID_B (PK) Value

B1 22000
B2 35000
… …

B15 20000

Tab. 3.3 (c) Table T2,bis

ID_B (PK) Date

B1 01/01/2000
B2 10/10/2010
… …

B15 05/05/2020

RELATIONAL DATABASE AND SQL LANGUAGE

5

Tab. 3.3 (d) Table T2,ter

ID_B (PK) Value

A1 50
A2 11111
… …

A10 2000

Tab. 3.3 (e) Union of T1 and T2

ID_Union (PK) Value

A1 12000
A2 15000
… 10000

A100 500
B1 22000
… …

B15 20000

Note that an union can be performed only on Table T1 and T2 and the result is shown in Tab. 3.3 (e)1. Table T1

and T2,bis cannot be combined using the Union operator because values stored in the second field are of

different and incompatible types (i.e., Integer and Date). Similarly, Table T1 and T2,ter cannot be combined using

the Union operator because the resulting table would have duplicate primary keys and thus it would violate

referential integrity constraints.

Difference

Also the Difference is a Union is a binary operation. Let us consider a Table T1 and a Table T2; the difference

performed on T1 and on T2 returns a third Table T3 with all the record of T1 except those ones that are also

included in T2.

As for the Union, to perform a Difference, T1 and T2 must have the same structure (in terms of number and

type of fields). A simple example follows:

Tab. 3.4 (a) Table T1

Name Surname

Maggie Blond
Ronald Regan
George Busch
Bill Clinton
Tom Clay

1 Actually, also T2 and T2,Ter could be combined using the Union operator

RELATIONAL DATABASE AND SQL LANGUAGE

6

Tab. 3.4 (b) Table T2

Name Surname

Maggie Blond
Ronald Regan
George Phillips
Harry Clinton
Tomas Jefferson

Tab. 3.4 (c)
Table T3 the Difference

Name Surname

George Busch
Bill Clinton
Tom Clay

3. Derivative Operators

Inner or Natural Join

Among all the relational algebra operators, the Inner (also called Natural2) Join is surely the most important

one, as it allows one to generate very complex queries operating on two or more tables having common data.

Let us consider two tables T1, made of n1 records with r1 fields, and T2 made of n2 records with r2 fields. If m

records of T1 and T2 have some common data (i.e., same values of one or more fields), then the Inner Join

returns a table T3 containing new records obtained as the combination of all the records of T1 and T2 that

have some common data, without duplicated fields.

More precisely, for each one of the m couples of records R1,i and R2,j (of T1 and T2, respectively) having k

common data, the resulting table T3 will contain a record with (n1 + n2 - k) fields, of which the first n1 fields are

those of R1,i, the last ones are those of R2,j, without the k common fields.

Most of the times, an Inner Join is made on two tables in OTM relation. In this peculiar, but frequent, condition,

the join is made on the FK (i.e., the common field is limited to the value of the PK of the father table and to the

value of the FK of the son table). To better clarify this concept, let us consider once again the AUTHORS and the

BOOKS tables (i.e., Tab. 3.2 (a) and 3.2 (b), respectively). In this case, am Inner Join will return a table with five

records of six fields. This is because:

• All the five records of the BOOKS table are linked with one of the three records of the AUTHORS table

(i.e., there is no record with a null value in the FK field);

• The BOOKS table has records with four fields and the BOOKS table has records with three fields, but

one of them is the Forward Key that, being a common field, will be erased by the natural join.

2 A small difference exists, but we will use the term Inner and Natural as synonyms.

RELATIONAL DATABASE AND SQL LANGUAGE

7

Thus, the result is the one shown by Tab. 3.5 below:

Tab. 3.5
Inner Join performed on AUTHORS and BOOKS Tables

Id _Author Surname Nationality Language Id_Book Title

1 Dante Italian Vulgar Italian 1 Divina Commedia
2 Collodi Italian Tuscan Italian 5 Le avventure di Pinocchio
3 Joyce Irish English 3 Ulisse
1 Dante Italian Vulgar Italian 2 De Vulgari Eloquentia
3 Joyce Irish English 4 Finnegans Wake

As it can be seen, the table is not normalized; as above mentioned this is not a problem. Only the original table

of a RDB must be normalized, whereas those one obtained by performing relational algebra may also be non-

normalized (most of the times they are non-normalized).

As above mentioned the INNER JOIN is a derivative operator; as such it can be obtained by properly combining

some basic operators. Specifically, the inner join can be obtained in the following way:

• A Cartesian product is made on T1 and T2;

• A Selection is made to filter data, so as to keep only the records that have the same value in the

common field (typically those that have the same value of the Primary and of the Forward key);

• A Projection is made, to get rid of the duplicated values (i.e., the common data, typically the FK)

This is shown by Tab. 3.6 where the records and the duplicated fields that must be deleted are highlighted in

light grey.

Tab. 3.6.

Cartesian Product, Selection and Projection performed on AUTHORS and BOOKS tables
Id_Author Surname Nationality Language Id_Author Id_Book Title

1 Dante Italian Vulgar Italian 1 1 Divina Commedia
2 Collodi Italian Tuscan Italian 1 1 Divina Commedia
3 Joyce Irish English 1 1 Divina Commedia
1 Dante Italian Vulgar Italian 1 2 De Vulgari Eloquentia
2 Collodi Italian Tuscan Italian 1 2 De Vulgari Eloquentia
3 Joyce Irish English 1 2 De Vulgari Eloquentia
1 Dante Italian Vulgar Italian 3 3 Ulisse
2 Collodi Italian Tuscan Italian 3 3 Ulisse
3 Joyce Irish English 3 3 Ulisse
1 Dante Italian Vulgar Italian 3 4 Finnegans Wake
2 Collodi Italian Tuscan Italian 3 4 Finnegans Wake
3 Joyce Irish English 3 4 Finnegans Wake
1 Dante Italian Vulgar Italian 2 5 Le avventure di Pinocchio
2 Collodi Italian Tuscan Italian 2 5 Le avventure di Pinocchio
3 Joyce Irish English 2 5 Le avventure di Pinocchio

RELATIONAL DATABASE AND SQL LANGUAGE

8

Semi Join

The Semi Join operator is a particular instance of the Natural Join described above. Let us consider two tables

T1 and T2 with some common fields. In this case, the result of a Semi Join between T1 and T2 is analogous to that

of an Inner Join with the exception that, in this case, the records of the output table T3 will contains only the

fields of the records of T1.

For instance, considering once again the AUTHORS and the BOOKS tables, performing a semi join instead of an

Inner Join, then Table 3.5 would change as in Table 3.7 (where the records of the BOOKS table, in white and

light grey, have been erased).

Tab. 3.7
Semi Join performed on AUTHORS and BOOKS Tables

Id _Author Surname Nationality Language Id_Book Title

1 Dante Italian Vulgar Italian 1 Divina Commedia
2 Collodi Italian Tuscan Italian 5 Le avventure di Pinocchio
3 Joyce Irish English 3 Ulisse
1 Dante Italian Vulgar Italian 2 De Vulgari Eloquentia
3 Joyce Irish English 4 Finnegans Wake

Also the SEMI JOIN is a derivative operator; as such it can be obtained by properly combining some basic

operators. Specifically, the inner join can be obtained in the following way:

• An Inner Join is made on T1 and T2;

• A Projection is made, to get rid of the fields that belongs to the records of T2, i.e., only the data of T1

are displayed.

Outer Join

At this point it should be clear that performing an Inner or a Semi Join on two tables T1 and T2 having

some common data, some of the original data may get lost in the output table T3. More precisely,

records of T1 that do not have a correspondence in the records of T2 and vice versa, will not be

displayed in T3. To better clarify this idea, let us suppose that two new authors (i.e., Asimov and Camilleri)

have been inserted in the AUTHORS table, but that there are no books written by them in the BOOKS table. Let

us also suppose that a new title has been inserted in the BOOKS table (i.e., Il fu mattia Pascal), but that the

author of this new book (i.e., Luigi Pirandello) has not been inserted in the AUTHORS table, yet.

A possible case is shown in Table 3.8 (a) and 3.8 (b).

RELATIONAL DATABASE AND SQL LANGUAGE

9

If we performed an Inner Join on these tables, we would get, once again, Table 3.5 as result.

Evidently, in the five records of Table 3.5 there is trace neither of the new authors, nor of the new

book. These data ‘have been lost’ because they belong to uncoupled records.

Tab. 3.8 (a)
New AUTHORS Table

Id _Author Surname Nationality Language

1 Dante Italian Vulgar Italian
2 Collodi Italian Tuscan Italian
3 Joyce Irish English
4 Asimov Polish English
5 Camilleri Italian Italian

Tab. 3.8 (b)
New BOOKS table

Id _Author Id_Book Title

1 1 Divina Commedia
1 2 De Vulgari Eloquentia
3 3 Ulisse
3 4 Finnegans Wake
2 5 Le avventure di Pinocchio
Null 6 Il Fu Mattia Pascal

This problem can be solved using an OUTER JOIN instead of the classical INNER JOIN. Indeed, by performing an

OUTER JOIN on two tables T1 and T2 with some common field we obtain a third table T3 that contains:

• All the records of T1 concatenated with the records of T2 having common data (i.e., the same

records that are returned by means of an INNER JOIN performed on T1 and T2)

• All the records of T1 that do not have any correspondence in T2, concatenated with a record of

T2 with all null values;

• All the records of T2 that do not have any correspondence in T1, concatenated with a record of

T1 with all null values;

For instance, in the previous case, {5, Camilleri, Italian, Italian} is a record of T1 that is not linked to

any record of T2. Performing an OUTER JOIN, this record will be concatenated with a record of T2

made of null values {Null, Null, Null}. Consequently, the resulting table will also contain the following

new record: {5, Camilleri, Italian, Italian, Null, Null, Null}.

RELATIONAL DATABASE AND SQL LANGUAGE

10

The overall result is shown in Table 3.9, where the (erased) common field are shown in light grey.

Tab. 3.9 (b)
The OUTER JOIN performed on AUTHORS AND BOOKS

Id _Author Surname Nationality Language Id_Authots Id_Book Title

1 Dante Italian Vulgar Italian 1 1 Divina Commedia
2 Collodi Italian Tuscan Italian 2 5 Le avventure di Pinocchio
3 Joyce Irish English 3 3 Ulisse
1 Dante Italian Vulgar Italian 1 2 De Vulgari Eloquentia
3 Joyce Irish English 3 4 Finnegans Wake
4 Asimov Polish English Null Null Null
5 Camilleri Italian Italian Null Null
Null Null Null Null Null 6 Il Fu Mattia Pascal

We conclude this section noting that there are also two particular type of OUTER JOIN, these are the LEFT

OUTER JOIN and the RIGHT OUTER JOIN. Specifically, in case of LEFT OUTER JOIN, in addition to the records of

the Inner Join, in the output table we will find also the records of T1 that are not linked to any record of T2 (see

Table 3.10 (b)); conversely, in case of a RIGH OUTER JOIN, in addition to the records of the Inner Join, in the

output table we will find also the records of T2 that are not linked to any record of T1 (see Table 3.10 (a)).

Tab. 3.10 (a)
The LEFT OUTER JOIN performed on AUTHORS AND BOOKS

Id _Author Surname Nationality Language Id_Book Title

1 Dante Italian Vulgar Italian 1 Divina Commedia
2 Collodi Italian Tuscan Italian 5 Le avventure di Pinocchio
3 Joyce Irish English 3 Ulisse
1 Dante Italian Vulgar Italian 2 De Vulgari Eloquentia
3 Joyce Irish English 4 Finnegans Wake
4 Asimov Polish English Null Null
5 Camilleri Italian Italian Null Null

Tab. 3.10 (b)
The LEFT OUTER JOIN performed on AUTHORS AND BOOKS

Id _Author Surname Nationality Language Id_Book Title

1 Dante Italian Vulgar Italian 1 Divina Commedia
2 Collodi Italian Tuscan Italian 5 Le avventure di Pinocchio
3 Joyce Irish English 3 Ulisse
1 Dante Italian Vulgar Italian 2 De Vulgari Eloquentia
3 Joyce Irish English 4 Finnegans Wake
Null Null Null Null 6 Il Fu Mattia Pascal

Thus, we could say that, in case of two tables in OTM relation:

• The LEFT OUTER JOIN also returns the records of the “Father table that do not have a son”;

• The RIGHT OUTER JOIN also returns the records of the “Son table that do not have a father”.

RELATIONAL DATABASE AND SQL LANGUAGE

11

Clearly, also the SEMI JOIN, being a derivative operator can be obtained by properly combining some basic

operators. Specifically, the Outer join can be obtained in the following way:

• An Inner Join is made on T1 and T2 and a table T3,1 is obtained

• A Cartesian Product is made on all the records of T1 that are not linked to any records of T2 and a single

record of T2 having all null values. This operation generates, as output, a new table T3,2

• A Cartesian Product is made on all the records of T2 (that are not linked to any records of T1) and a

single record of T1 having all null values. This operation generates, as output, a new table T3,3

• The OUTER JOIN Table T3 is obtained as the Union of T3,1, T3,2 and T3,3.

Intersection

Given two tables T1 and T2 with records having the same attributes, the Intersection returns as results a third

table T3 that contains all the records that are common to T1 and T2.

It is easy to see that, to obtain the Intersection it is sufficient to use the Difference operator twice. Indeed,

letting T4 = (T1 - T2), then we have that T3 = (T1 - T4).

This is graphically shown below:

Tab. 3.11 (a)
Table T1

ID_A (PK) Value

A1 12000
A2 15000
A3 10000
B1 22000
B5 20000

Tab. 3.11 (b)
Table T2

ID_B (PK) Value

B1 22000
B2 35000
B4 1500
B5 20000

RELATIONAL DATABASE AND SQL LANGUAGE

12

Tab. 3.11 (c)
Table T4 = T1 - T2

ID_B (PK) Value

A1 12000
A2 15000
A3 10000

Tab. 3.11 (d) Table T3 = T1 - T4

ID_B (PK) Value

B1 22000
B5 20000

Division

Let us consider two tables T1, with rows of r1 fields, and T2, with rows of r2 < r1 fields. Let us also suppose that a

certain the r2 fields of T2 are compatible (i.e., has the same type of data) with an equal number of fields of T1. In

this case, a Division performed on T1 and T2 will return a third table T3 with as many record as the number of

records of T1 that, relatively to the compatible fields, perfectly match the values of the records of T2. Also, the

records of T3 will contain only the fields of T1 that do not appear in T2.

An example is shown below.

Tab. 3.12 (a)
Table T1

a1 a2 a3 a4

a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

Tab. 3.12 (b)
Table T2

a1 a2

a11 a12
a41 a42

Tab. 3.12 (c)
Table T3 Divison

a3 a4

a13 a14
a43 a44

