
USEFUL VBA FUNCTIONS GROUPED BY TYPE

Arrays

The following functions operating on arrays can be used.

1. Array Function
Returns a Variant containing an array; the syntax is:

Array(arglist)

The required arglist argument is a comma-delimited list of

values that are assigned to the elements of the array contained

within the Variant. If no arguments are specified, an array of

zero length is created.

Example

Dim MyWeek As Variant

Dim MyDay As String

MyWeek = Array("Mon", "Tue", "Wed", "Thu", "Fri", "Sat", "Sun")

' Return values assume lower bound set to 1

MyDay = MyWeek(2) ' MyDay contains "Tue".

MyDay = MyWeek(4) ' MyDay contains "Thu".

2. Lbound

Returns a Long containing the smallest available subscript for

the indicated dimension of an array; the syntax is:

LBound (arrayname [, dimension])

where:

• arrayname is the name of the array variable,

• the optional dimension parameter is a whole number

indicating which dimension's lower bound is returned. Use

1 for the first dimension, 2 for the second, and so on.

3. Ubound

Returns a Long containing the upper limit of an array dimension;

the syntax is the following one:

UBound (arrayname [, dimension])

4. Filter

Returns a subset of a supplied string array, based on supplied

criteria; the syntax is:

Filter(SourceArray, Match, [Include], [Compare])

Where the function arguments are:

SourceArray - The original array of Strings, that you want to filter.

Match - The string that you want to search for, within each element of
the supplied SourceArray.

[Include] - An option boolean argument that specifies whether the returns
array should consist of elements that include or do not include
the supplied Match String.
This can have the value True or False, meaning:

True - Only return elements that include the Match String

False - Only return elements that do not include the Match

String

If the [Include] argument is omitted, it takes on the default value
True.

[Compare] - An optional argument, specifying the type of String comparison
to make.
This can be any of the following values:

vbBinaryCompare - performs a binary comparison

vbTextCompare - performs a text comparison

vbDatabaseCompare - performs a database comparison

Example

' Filter an array of names for entries that contain "Smith".

' First create the original array of names.

Dim names As Variant

names = Array("Ann Smith", "Barry Jones", "John Smith", "Stephen

Brown", "Wilfred Cross")

' Use the Filter function to extract names containing "Smith".

Dim smithNames As Variant

smithNames = Filter(names, "Smith")

' The array smithNames now has length 2 and contains the Strings

' "Ann Smith" and "John Smith".

5. Join

Joins together an array of substrings and returns a single

string; the syntax is:

Join(SourceArray, [Delimiter])

Where the function arguments are:

SourceArray - The array of substrings that you want to join together.

[Delimiter] - The delimiter that is used to separate each of the substrings
when making up the new string.
If omitted, the [Delimiter] is set to be a space " ".

Example

The following VBA code joins together the strings "John", "Paul"

and "Smith".

' Join together the strings "John", "Paul" and "Smith".

Dim fullName As String

Dim names(0 to 2) As String

names(0) = "John"

names(1) = "Paul"

names(2) = "Smith"

fullName = Join(names)

' The variable fullName is now set to "John Paul Smith"

6. Split

Splits a string into a number of substrings and returns a one-

dimensional array of substrings; the syntax is:

Split(Expression, [Delimiter], [Limit], [Compare])

Where the function arguments are:

Expression - The text string that you want to split.

[Delimiter] - The delimiter that is to be used to specify where the supplied
Expression should be split.
If omitted, the [Delimiter] is set to be a space " ".

[Limit] - An optional integer argument, specifying the maximum
number of substrings to be returned.

If the [Limit] argument is omitted, it has the default value -
1, denoting that all substrings should be returned.

[Compare] - An optional VbCompareMethod enumeration value,
specifying the type of comparison that should be used for the
substrings.

This can have any of the following values:

vbBinaryCompare - performs a binary
comparison

vbTextCompare - performs a text
comparison

vbDatabaseCompare - performs a database
comparison

Example

The following code split the path of a file into 4 sub-

strings, assigned to the 4 elements of an array.

' Split the string "C:\Users\My Documents\File.txt" into substrings.

Dim substrings() As String

substrings = Split("C:\Users\My Documents\File.txt", "\")

' The array "substrings" now has length 4, and contains the values

' "C:", "Users", "My Documents" and "File.txt"

TEXT

The following functions operating on strings are available; in

these notes we will only mention the Format function; for more

details on the other ones please refer to the notes on “VBA

programming”.

VBA Text Functions

Format
Applies a format to an expression and returns the result as a string.

InStr
Returns the position of a substring within a string.

InStrRev
Returns the position of a substring within a string, searching from right to left.

Left
Returns a substring from the start of a supplied string.

Len
Returns the length of a supplied string.

LCase
Converts a supplied string to lower case text.

LTrim
Removes leading spaces from a supplied string.

Mid
Returns a substring from the middle of a supplied string.

Replace
Replaces a substring within a supplied text string.

Right
Returns a substring from the end of a supplied string.

RTrim
Removes trailing spaces from a supplied string.

Space
Creates a string consisting of a specified number of spaces.

StrComp

Compares two strings and returns an integer representing the result of the
comparison.

StrConv
Converts a string into a specified format.

String
Creates a string consisting of a number of repeated characters.

StrReverse
Reverses a supplied string.

Trim
Removes leading and trailing spaces from a supplied string.

UCase
Converts a supplied string to upper case text.

https://www.excelfunctions.net/vba-format-function.html
https://www.excelfunctions.net/vba-instr-function.html
https://www.excelfunctions.net/vba-instrrev-function.html
https://www.excelfunctions.net/vba-left-function.html
https://www.excelfunctions.net/vba-len-function.html
https://www.excelfunctions.net/vba-lcase-function.html
https://www.excelfunctions.net/vba-ltrim-function.html
https://www.excelfunctions.net/vba-mid-function.html
https://www.excelfunctions.net/vba-replace-function.html
https://www.excelfunctions.net/vba-right-function.html
https://www.excelfunctions.net/vba-rtrim-function.html
https://www.excelfunctions.net/vba-space-function.html
https://www.excelfunctions.net/vba-strcomp-function.html
https://www.excelfunctions.net/vba-strconv-function.html
https://www.excelfunctions.net/vba-string-function.html
https://www.excelfunctions.net/vba-strreverse-function.html
https://www.excelfunctions.net/vba-trim-function.html
https://www.excelfunctions.net/vba-ucase-function.html

Format

Format applies a specified format to an expression and returns

the result as a string; the syntax is:

Format(Expression,[Format],[FirstDayOfWeek],[FirstWeekOfYear])

Where the function arguments are:

Expression - The expression that you want to format.

[Format] - An optional argument specifying the format that is to be
applied to the Expression.
This can be a user-defined format or one of the predefined
named formats listed below:

Predefined Date Formats:

Format Description

General
Date

- Displays a date as defined in your
system's General Date setting.
If a date only, no time is displayed; If a
time only, no date is displayed.

Long Date - Displays a date as defined in your
system's Long Date settings.

Medium
Date

- Displays a date as defined in your
system's Medium Date settings.

Short Date - Displays a date as defined in your
system's Short Date settings.

Long Time - Displays a time as defined in your
system's Long Time settings.

Medium
Time

- Displays a time as defined in your
system's Medium Time settings.

Short Time - Displays a time as defined in your
system's Short Time settings.

Predefined Number Formats:

Format Description

General
Number

- Displays a number as it is entered.

Currency - Displays a number with a currency
symbol, using the thousand
separator and decimal places, as
defined in your system's currency
setting.

Euro - Displays a number as a currency,
with the euro currency symbol.

Fixed - Displays at least one digit to the left
of the decimal place and follows the
system settings for the number of
decimal places to the right of the
decimal place.

Standard - Displays the thousand separator and
follows the standard system settings
for the number of digits displayed at
either side of the decimal place.

Percent - Displays a number multiplied by 100
and followed by the percent symbol;
The format follows the standard
system settings for the number of
digits displayed at either side of the
decimal place.

Scientific - Displays a number using scientific
notation.

Yes/No - Displays No if the number is equal to
zero or Yes otherwise.

True/False - Displays False if the number is equal
to zero or True otherwise.

On/Off - Displays Off if the number is equal to
zero, or On otherwise.

[FirstDayOf
Week]

- An optional FirstDayOfWeek enumeration value, specifying
the weekday that should be used as the first day of the week.

This can have any of the following values:

vbUseSystemDayOfWeek - The first day of the
week is as specified in
your system settings

vbSunday - Sunday

vbMonday - Monday

vbTuesday - Tuesday

vbWednesday - Wednesday

vbThursday - Thursday

vbFriday - Friday

vbSaturday - Saturday

[FirstWeek
OfYear]

- An optional FirstWeekOfYear enumeration value, specifying
the week that should be used as the first week of the year.

This can have any of the following values:

vbSystem - The first week of the year is as
specified in your system
settings

vbFirstJan1 - The week in which Jan 1st
occurs

vbFirstFourDays - The first week that contains at
least four days in the new year

vbFirstFullWeek - The first full week in the new
year

Example #1 – Formatting dates

The following code shows how the VBA Format function can be used

to format date and time in five different ways. Specifically,

in case of user defined format, the following symbols can be used,

for date and time, respectively:

Symbol Range

d 1-31 (Day of month, with no leading zero)

dd 01-31 (Day of month, with a leading zero)

w 1-7 (Day of week, starting with Sunday = 1)

ww 1-53 (Week of year, with no leading zero; Week 1 starts on Jan 1)

m 1-12 (Month of year, with no leading zero, starting with January = 1)

mm 01-12 (Month of year, with a leading zero, starting with January = 01)

mmm Displays abbreviated month names (Hijri month names have no abbreviations)

mmmm Displays full month names

y 1-366 (Day of year)

yy 00-99 (Last two digits of year)

yyyy 100-9999 (Three- or Four-digit year)

Symbol Range

h 0-23 (1-12 with "AM" or "PM" appended) (Hour of day, with no leading zero)

hh 00-23 (01-12 with "AM" or "PM" appended) (Hour of day, with a leading zero)

n 0-59 (Minute of hour, with no leading zero)

nn 00-59 (Minute of hour, with a leading zero)

m 0-59 (Minute of hour, with no leading zero). Only if preceded by h or hh

mm 00-59 (Minute of hour, with a leading zero). Only if preceded by h or hh

s 0-59 (Second of minute, with no leading zero)

ss 00-59 (Second of minute, with a leading zero)

Other S. Meaning

: Time Separator

/ Date Separator

AM/PM 12 hours clock with upper case AM (or PM)

am/pm 12 hours clock with lower case AM (or PM)

' Format date/time in different ways.

Dim dt1 As String

Dim MyTime As Date, MyDate As Date

MyTime = #17:04:23#

MyDate = #January 27, 1993#

dt1 = Format(#12/31/2015 12:00:00 PM#)

' dt1 is now equal to the String "12/31/2015 12:00:00 PM".

dt1 = Format(#12/31/2015 12:00:00 PM#, "Long Date")

' dt1 is now equal to the String "Thursday, December 31, 2015".

dt1 = Format(#12/31/2015 12:00:00 PM#, "Medium Time")

' dt1 is now equal to the String "12:00 PM".

dt1 = Format(#12/31/2015 12:00:00 PM#, "mm/dd/yyyy")

' dt1 is now equal to the String "12/31/2015".

dt1 = Format(#12/31/2015 12:00:00 PM#, "dddd mm/dd/yyyy hh:mm:ss")

' dt1 is now equal to the String "Thursday 12/31/2015 12:00:00".

dt1 = Format(MyTime, "hh:mm:ss am/pm")

' dt1 is now equal to "05:04:23 pm".

dt1 = Format(MyTime, "hh:mm:ss AM/PM")

' dt1 is now equal to "05:04:23 PM".

dt1 = Format(MyDate, "dddd, mmm d yyyy")

' dt1 is now equal to "Wednesday, Jan 27 1993".

Note that, in the above examples:

• In the first call to the Format function, the [Format] argument

is omitted. Therefore, the current system default date/time

format is used.

• The second and third calls to the Format function use the

predefined formats "Long Date" and "Medium Time". These format

definitions will vary, according to your system date/time

settings.

• The last calls to the Format function have been supplied with

user-defined formats.

Example #2 – Formatting numbers

As for dates, also to format numbers some special characters can

be used as “placeholder”. These are:

Character Description

None Display the number with no formatting.

0

Digit placeholder. Display a digit or a zero. If the expression has a digit in the

position where the 0 appears in the format string, display it; otherwise, display a

zero in that position.

Digit placeholder. Display a digit or nothing. If the expression has a digit in the

position where the # appears in the format string, display it; otherwise, display

nothing in that position.

. Decimal placeholder

%
Percentage placeholder. The expression is multiplied by 100. The percent

character (%) is inserted in the position where it appears in the format string.

, Thousand separator

: Time separator

/ Date separator

E- E+ e-

e+

Scientific format. If the format expression contains at least one digit placeholder

(0 or #) to the right of E-, E+, e-, or e+, the number is displayed in scientific

format and E or e is inserted between the number and its exponent.

- + $ ()
Display a literal character. To display a character other than one of those listed,

precede it with a backslash (\) or enclose it in double quotation marks (" ").

\

Display the next character in the format string. To display a character that has

special meaning as a literal character, precede it with a backslash (\). The

backslash itself isn't displayed. Using a backslash is the same as enclosing the

next character in double quotation marks. To display a backslash, use two

backslashes (\\). Examples of characters that can't be displayed as literal

characters are the date-formatting and time-formatting characters (a, c, d, h, m,

n, p, q, s, t, w, y, /, and :), the numeric-formatting characters (#, 0, %, E, e, comma,

and period), and the string-formatting characters (@, &;, <, >, and !).

"ABC" Display the string inside the double quotation marks (" ").

https://docs.microsoft.com/en-us/office/vba/language/glossary/vbe-glossary#expression
https://docs.microsoft.com/en-us/office/vba/language/glossary/vbe-glossary#date-separators

Also, a user-defined format expression for numbers can have from

one to four sections separated by semicolons, for instance

"$#,##0;($#,##0)" is a format with two sections.

Specifically, if you use:

• One section – the format expression applies to all values;

• Two sections – the first applies to positive, the second

to negative values;

• Three sections – as above and the third section applies to

zeros;

• Four sections – as above, and the forth section applies to

Null values

' Format numbers in different ways.

Dim MyStr As String,

MyStr = Format(50000)' equal to the String "50000".

MyStr = Format(50000, "Currency")' equal to the String "$50,000.00".

MyStr = Format(0.88, "Percent")' equal to the String "88.00%".

MyStr = Format(50000, "#,##0.0")' to the String "50,000.0".

MyStr = Format(0.88, "0.0")' equal to the String "0.9".

MyStr = Format(5459.4, "##,##0.00") ' Returns "5,459.40".

MyStr = Format(334.9, "###0.00") ' Returns "334.90".

MyStr = Format(5, "0.00%") ' Returns "500.00%".

In the following VBA code, the VBA Format function is used to

format numeric values in different ways.

Note that, in the above examples:

• In the first call to the Format function, the [Format] argument

is omitted. Therefore, the current system default number format

is used.

• The second and third calls to the Format function use the

predefined formats "Currency" and "Percentage". These format

definitions may vary, according to your system settings.

• The last calls to the Format function have been supplied with

user-defined formats.

https://docs.microsoft.com/en-us/office/vba/language/glossary/vbe-glossary#expression

Example #3 – Formatting strings

The following example shows the VBA Format function used with

different format options for Strings. Note that, in this case

you can use any of the following characters to create a format

expression for strings.

Character Description

@

Character placeholder. Display a character or a space. If the string has a character

in the position where the at symbol (@) appears in the format string, display it;

otherwise, display a space in that position. Placeholders are filled from right to

left unless there is an exclamation point character (!) in the format string.

&

Character placeholder. Display a character or nothing. If the string has a character

in the position where the ampersand (&;) appears, display it; otherwise, display

nothing. Placeholders are filled from right to left unless there is an exclamation

point character (!) in the format string.

< Force lowercase. Display all characters in lowercase format.

> Force uppercase. Display all characters in uppercase format.

!
Force left to right fill of placeholders. The default is to fill placeholders from right

to left.

' Format two text strings using different user-defined formats.

Dim str1 As String,str2 As String

str1 = Format("John Smith", ">")' str1 is now "JOHN SMITH".

str2 = Format("123456789", "@@@-@@@-@@@")' str2 is "123-456-789".

In the above VBA code:

• In the first call to the Format function, the ">" character

forces the supplied text to be formatted in upper case.

• In the second call to the Format function, the "@" character

represents a displayed character and the "-" character is

text to be inserted in the specified positions of the

String.

https://docs.microsoft.com/en-us/office/vba/language/glossary/vbe-glossary#expression

Conversions

The following functions can be used to perform type casting, or

other conversions operations. Most of them are self-explaining,

so we will focus only on the trickiest ones.

Function Effect

Asc Returns an integer representing the code for a supplied character.

CBool

Converts an expression to a Boolean data type.

CByte

Converts an expression to a Byte data type.

CCur

Converts an expression to a Currency data type.

CDate

Converts an expression to a Date data type.

CDbl

Converts an expression to a Double data type.

CDec

Converts an expression to a Decimal data type.

Chr

Returns the character corresponding to a supplied character code.

CInt

Converts an expression to an Integer data type.

CLng

Converts an expression to a Long data type.

CSng

Converts an expression to a Single data type.

CStr

Converts an expression to a String data type.

CVar

Converts an expression to a Variant data type.

FormatCurrency

Applies a currency format to an expression and returns the result as a
string.

FormatDateTime

Applies a date/time format to an expression and returns the result as a
string.

FormatNumber

Applies a number format to an expression and returns the result as a
string.

FormatPercent

Applies a percentage format to an expression and returns the result as a
string.

Hex

Converts a numeric value to hexadecimal notation and returns the result
as a string.

Oct

Converts a numeric value to octal notation and returns the result as a
string.

Str

Converts a numeric value to a string.

Val

Converts a string to a numeric value.

https://www.excelfunctions.net/vba-asc-function.html
https://www.excelfunctions.net/vba-cbool-function.html
https://www.excelfunctions.net/vba-cbyte-function.html
https://www.excelfunctions.net/vba-ccur-function.html
https://www.excelfunctions.net/vba-cdate-function.html
https://www.excelfunctions.net/vba-cdbl-function.html
https://www.excelfunctions.net/vba-cdec-function.html
https://www.excelfunctions.net/vba-chr-function.html
https://www.excelfunctions.net/vba-cint-function.html
https://www.excelfunctions.net/vba-clng-function.html
https://www.excelfunctions.net/vba-csng-function.html
https://www.excelfunctions.net/vba-cstr-function.html
https://www.excelfunctions.net/vba-cvar-function.html
https://www.excelfunctions.net/vba-formatcurrency-function.html
https://www.excelfunctions.net/vba-formatdatetime-function.html
https://www.excelfunctions.net/vba-formatnumber-function.html
https://www.excelfunctions.net/vba-formatpercent-function.html
https://www.excelfunctions.net/vba-hex-function.html
https://www.excelfunctions.net/vba-oct-function.html
https://www.excelfunctions.net/vba-str-function.html
https://www.excelfunctions.net/vba-val-function.html

1. FormatCurrency

FormatCurrency function applies a currency format to a numeric

expression and returns the result as a string.

The syntax of the function is:

FormatCurrency(Expression, [NumDigitsAfterDecimal],

 [IncludeLeadingDigit],[UseParensForNegativeNumbers],

 [GroupDigits])

Where the function arguments are:

Expression - The numeric expression that you want to
format.

[NumDigitsAfterDecimal] - An optional numeric value specifying the
number of digits that should be displayed
after the decimal.
If [NumDigitsAfterDecimal] is omitted, it
defaults to the value -1, denoting that the
computer's regional settings should be used.

[IncludeLeadingDigit] - An optional vbTriState enumeration value,

specifying whether a leading zero should be

displayed for fractional values.

This can have any of the following values:

vbFalse - No leading zero.

vbTrue - Display a leading zero.

vbUseDefault - Default computer settings

[UseParensForNegativeNumbers] - An optional vbTriState enumeration value,
specifying whether negative numbers should
be encased in parentheses.
This can have any of the following values:

vbFalse - Do not encase

vbTrue - Encase

vbUseDefault - Use the default

computer settings.

[GroupDigits] -

An optional vbTriState enumeration value,
specifying whether the number should be
grouped (into thousands, etc.), using the
group delimiter that is specified on the
computer's regional settings.

This can have any of the following values:

vbFalse - Do not group

digits.

vbTrue - Group digits.

vbUseDefault - Use the default

computer settings.

Example

The following example shows how the VBA FormatCurrency function

can be used to format numeric values as currencies. Each example

uses different formatting rules.

' Format different numeric values as currencies.

Dim cur1 As String, cur2 As String, cur3 As String, cur4 As String

cur1 = FormatCurrency(1000000.00)

' cur1 is now equal to the String "$1,000,000.00".

cur2 = FormatCurrency(1000000.00, , , , vbFalse)

' cur2 is now equal to the String "$1000000.00".

cur3 = FormatCurrency(100.55, 0)

' cur3 is now equal to the String "$101".

cur4 = FormatCurrency(-500, 2, , vbTrue)

' cur4 is now equal to the String "($500.00)".

Note that in the above examples:

• In the first call to the FormatCurrency function, only the

Expression argument has been provided. Therefore, the

returned string "$1,000,000.00" has used the default

currency format for the current computer.

• In the second call to the FormatCurrency function, the

[GroupDigits] argument is set to vbFalse. Therefore, the

number 1,000,000.00 is returned as the string "$1000000.00"

(with no commas separating the groups of numbers).

• In the third call to the FormatCurrency function, the

[NumDigitsAfterDecimal] argument is set to 0. Therefore,

the value 100.55 is rounded to zero decimal places before

being returned as the currency string "$101".

• In the fourth call to the FormatCurrency function, the

[UseParensForNegativeNumbers] argument is set to vbTrue.

Therefore, the value -500 is returned as the string

($500.00).

2 FormatDateTime

FormatDateTime function applies a date and/or time format to an

expression and returns the result as a string. The syntax of the

function is:

FormatDateTime(Expression, [NamedFormat])

Where the function arguments are:

Expression - The expression that you want to format.

[NamedFormat] - An optional vbDateTimeFormat enumeration specifying
the format that is to be applied to the Expression.
This can be any of the following:

Format Description

vbGeneral - Displays a date and/or time as defined in

your system's General Date setting.

If a date only, no time is displayed; If a

time only, no date is displayed.

vbLongDate - Displays a date as defined in your system's

Long Date settings.

vbLongTime - Displays a time as defined in your system's

Long Time settings.

vbShortDate - Displays a date as defined in your system's

Short Date settings.

vbShortTime - Displays a time as defined in your system's

Short Time settings.

Example

The following example shows how to format both data and time.'

Format the date and time 1/1/2016 12:00:00 in different ways.

Dim dt1 As String. dt2 As String.dt3 As String

dt1 = FormatDateTime(#1/1/2016 12:00:00 PM#)

' dt1 is now equal to the String "1/1/2016 12:00:00 PM".

dt2 = FormatDateTime(#1/1/2016 12:00:00 PM#, vbLongTime)

' dt2 is now equal to the String "12:00:00 PM".

dt3 = FormatDateTime(#1/1/2016 12:00:00 PM#, vbShortDate)

' dt3 is now equal to the String "1/1/2016".

3 FormatNumber

FormatNumber function applies a number format to a numeric

expression and returns the result as a string.The syntax of the

function is:

FormatNumber(Expression,[NumDigitsAfterDecimal],

 [IncludeLeadingDigit],[UseParensForNegativeNumbers],

 [GroupDigits])

Where the function arguments are the same as the FormatCurrency

function.

' Format numeric values in different ways.

Dim num1 As String

Dim num2 As String

Dim num3 As String

Dim num4 As String

num1 = FormatNumber(1000000)

' num1 is now equal to the String "1,000,000.00".

num2 = FormatNumber(1000000, , , , vbFalse)

' num2 is now equal to the String "1000000.00".

4 FormatPercent

FormatPercent function applies a percentage format to a numeric

expressioand returns the result as a string.

The syntax of the function is:

FormatPercent(Expression,[NumDigitsAfterDecimal],

 [IncludeLeadingDigit],[UseParensForNegativeNumbers],

 [GroupDigits])

Where the function arguments are the same as before.

' Format numeric values in different percentage formats.

Dim pc1 As String

Dim pc2 As String

Dim pc3 As String

Dim pc4 As String

pc1 = FormatPercent(10)

' pc1 is now equal to the String "1,000.00%".

pc2 = FormatPercent(10, , , , vbFalse)

' pc2 is now equal to the String "1000.00%".

pc3 = FormatPercent(0.559, 0)

' pc3 is now equal to the String "56%".

pc4 = FormatPercent(-0.5, , , vbTrue)

' pc4 is now equal to the String "(50.00%)".

5 Val

The Val function converts a supplied string into a numeric value.

The syntax of the function is:

Val(String)

Where the String argument is the string that you want to convert

into a number.

Note:

• The Val function ignores spaces in the supplied String, but

continues to read the characters after any space(s).

• If the Val function encounters a character that is not

recognised as part of a number, it stops reading the String

at this point. Characters that cannot be recognised as

parts of numbers include currency symbols, the % symbol

and commas.

Example 1 – Standard functioning

num1 = Val("500")

' num1 is now equal to 500.

num2 = Val("+10.9")

' num2 is now equal to 10.9.

num3 = Val("-0.5")

' num3 is now equal to -0.5.

num4 = Val("10.5 km")' num4 is now equal to the String "10.5".

Example 2 – Unexpected behaviours

As the Val function ignores spaces and also ignores everything

after the first character that is not recognised as part of a

number, you may sometimes get results that you do not expect.

Some examples are shown below.

num1 = Val("10 10")

' num1 is now equal to 1010 (spaces are ignored).

num2 = Val("$500.00")

' num2 is now equal to 0

' all characters after the $ symbol are ignored).

num3 = Val("1,000")' num3 is now equal to 1

' all characters after the comma are ignored.

Note that in the above examples:

• If the supplied String contains spaces, the Val function

ignores these, and continues to read the remaining

characters.

• If the supplied String starts with a $ symbol, this is not

recognised as part of a number, and so the Val function

ignores this, and all the remaining characters, and returns

the value 0.

• If the supplied String contains one or more commas, these

are not recognised as part of a number, and so the Val

function ignores the first comma and all characters after

this.

Math Functions

The following math functions are available

VBA Math & Trigonometric Functions

Abs

Returns the absolute value of a number.

Atn

Calculates the arctangent of a supplied number.

Cos

Calculates the cosine of a supplied angle.

Exp

Calculates the value of ex for a supplied value of x.

Fix

Truncates a number to an integer (rounding negative numbers towards zero).

Int

Returns the integer portion of a number (rounding negative numbers).

Log

Calculates the natural logarithm of a supplied number.

Rnd

Generates a random number between 0 and 1.

Round

Rounds a number to a specified number of decimal places.

Sgn

Returns an integer representing the arithmetic sign of a number.

Sin

Calculates the sine of a supplied angle.

Tan

Calculates the tangent of a supplied angle.

Sqr

Returns the square root of a number.

https://www.excelfunctions.net/vba-abs-function.html
https://www.excelfunctions.net/vba-atn-function.html
https://www.excelfunctions.net/vba-cos-function.html
https://www.excelfunctions.net/vba-exp-function.html
https://www.excelfunctions.net/vba-fix-function.html
https://www.excelfunctions.net/vba-int-function.html
https://www.excelfunctions.net/vba-log-function.html
https://www.excelfunctions.net/vba-rnd-function.html
https://www.excelfunctions.net/vba-round-function.html
https://www.excelfunctions.net/vba-sgn-function.html
https://www.excelfunctions.net/vba-sin-function.html
https://www.excelfunctions.net/vba-tan-function.html
https://www.excelfunctions.net/vba-sqr-function.html

Information Functions

The following math functions are available in VBA:

VBA Information Functions

IsArray Tests if a supplied variable is an array.

IsDate Tests if a supplied expression is a date.

IsEmpty Tests if a supplied variant is Empty.

IsError Tests if a supplied expression represents an error.

IsMissing Tests if an optional argument to a procedure is missing.

IsNull Tests if a supplied expression is Null.

IsNumeric Tests if a supplied expression is numeric.

IsObject Tests if a supplied variable represents an object variable.

TypeName Provides information about a variable

VarType Returns an Integer indicating the subtype of a variable.

1 TypeName Function

This VBA function receives in input a variable and it returns,

as output, a string containing information about the input

variable. Its syntax is the following one:

TypeName (varname)

The required varname argument is a variable of any type, except

a variable of a user defined type.

Example

The following example uses the TypeName function to get

information about a variable.

Dim NullVar As Variant, MyType As Variant

Dim StrVar As String

Dim IntVar As Integer

Dim CurVar As Currency

Dim ArrayVar (1 To 5) As Integer

NullVar = Null ' Assign Null value.

MyType = TypeName(StrVar) ' Returns "String".

MyType = TypeName(IntVar) ' Returns "Integer".

MyType = TypeName(CurVar) ' Returns "Currency".

MyType = TypeName(NullVar) ' Returns "Null".

MyType = TypeName(ArrayVar) ' Returns "Integer()".

https://www.excelfunctions.net/vba-isarray-function.html
https://www.excelfunctions.net/vba-isdate-function.html
https://www.excelfunctions.net/vba-isempty-function.html
https://www.excelfunctions.net/vba-iserror-function.html
https://www.excelfunctions.net/vba-ismissing-function.html
https://www.excelfunctions.net/vba-isnull-function.html
https://www.excelfunctions.net/vba-isnumeric-function.html
https://www.excelfunctions.net/vba-isobject-function.html
https://support.office.com/en-us/article/typename-function-581cb27e-4faa-45ba-a94b-5d96e43195ff

2 VarType Function

This VBA function receives in input a variable and it returns,

as output, an integer indicating the subtype of a variable.

containing information about the input variable. Returned values

are coded as Enum Type and can be easily found on the web and/or

in the VBA Development Environment. For instance:

• vbEmpty (corresponds to 0) and indicate an empty variable;

• vbNull (corresponds to 1) and indicate a null variable;

• vbInteger(corresponds to 2) and indicate an integer;

• …

• vbDate (corresponds to 7) and indicate a date/time;

• vbString (corresponds to 8) and indicate a string.

• …

Its syntax is the following one:

VarType (varname)

The required varname argument is a variable of any type, except

a variable of a user defined type.

Example

The following example uses the VarType function to determine the

subtype of a variable.

Dim IntVar, StrVar, DateVar, MyCheck

' Initialize variables.

IntVar = 459

StrVar = "Hello World"

DateVar = #2/12/69#

MyCheck = VarType(IntVar) ' Returns 2.

MyCheck = VarType(DateVar) ' Returns 7.

MyCheck = VarType(StrVar) ' Returns 8.

https://support.office.com/en-us/article/vartype-function-1e08636c-1892-40c2-aff3-2b894389e82d

ERROR FUNCTIONS

The following functions operating on error types can be used.

1 CVERR

The CVErr function returns an Error data type, relating to a

user-specified error code. The syntax is:

CVErr(Expression)

Where the supplied Expression is the required error code.

Example

The following example shows a simple VBA function that divides

a supplied number by a second supplied number. If the second

supplied number is zero, the CVErr function is used to create

an Error data type.

' Function to divide two numbers.

Function performDiv(num1 As Double, num2 As Double)

 If num2 = 0 Then

 ' Return Error data type for error code 11

 ' i.e., division by zero

 performDiv = CVErr(11) ' performDiv is now equal to Error 11.

 Else

 ' Perform the division.

 performDiv = num1 / num2

 End If

End Function

In the above function, if the second supplied number is zero,

the function returns the error data type 'Error 11' (which

represents a division by zero).

2 ERROR

Error returns the error message corresponding to a supplied

error code.The syntax of the function is:

Error([ErrorNumber])

Where [ErrorNumber] is an optional integer argument representing

the required error number.

Note that;

• If the [ErrorNumber] argument is omitted, the Error

function returns the most recent run-time error;

• If the [ErrorNumber] argument is zero, the Error function

returns an empty String;

• If the [ErrorNumber] argument is omitted and there have not

been any run-time errors so far, the Error function returns

an empty String.

Example 1

The following VBA code uses the Error function to get the error

messages for the error codes 5 and 11.

The last call to the Error function has no argument and so

returns the most recent run-time error (none in this case).

' Display the error messages for different error codes.

Dim errMsg1 As StringDim,errMsg2 As StringDim, errMsg3 As String

errMsg1 = Error(5)' errMsg1 = "Invalid procedure call or argument"

errMsg2 = Error(11)'errMsg2 = "Division by zero"

errMsg3 = Error()' errMsg3 = "" (no run-time errors have yet occurred)

Example 2

The following example shows a simple VBA function that divides

a supplied number by a second supplied number. If the second

supplied number is zero, a message box showing the corresponding

error message is displayed.

' Function to divide two numbers.

Function performDiv(num1 As Double,num2 As Double)

 If num2 = 0 Then

 ' Display the error message corresponding to error code 11

 MsgBox (Error(11))' Code to run if the divisor is zero

 performDiv = CVErr(11)

 Else

 ' Perform the division

 performDiv = num1 / num2

 End If

End Function

PROGRAM FLOW

Instead of using nested If … Then … Else and/or Selec … Case

statements, the following program folw functions can be used.

1 CHOOSE

For a supplied index, the Choose function selects the

corresponding value from a list of arguments. The syntax is:

Choose(Index, [Choice-1], [Choice-2], ...)

Where the function arguments are:

Index - The index of the value that you want to return (it must be between 1

and n, where n is the number of possible values).

If the supplied Index is less than 1, or is greater than the number of
supplied choices, the Choose function returns the value Null.

[Choice-1],

[Choice-2],

...

- A list of possible values to be returned (depending on the value of

Index)

Example

' Return specified values from a list of names

Dim val1, val2, val3, val4

val1 = Choose(1, "Mary", "Joseph", "Lucy", "Peter")

' val1 is now equal to "Mary"

val2 = Choose(2, "Mary", "Joseph", "Lucy", "Peter")

' val2 is now equal to "Joseph"

val3 = Choose(3, "Mary", "Joseph", "Lucy", "Peter")

' val13 is now equal to "Lucy"

val4 = Choose(4, "Mary", "Joseph", "Lucy", "Peter")

' val4 is now equal to "Peter"

The above VBA code uses the Choose function to return a value

from the list "Mary", "Joseph", "Lucy", "Peter".

The value of the Index argument determines which of the list

items is returned:

• When Index is set to 1, the Index function returns the

first list item, "Mary";

• When Index is set to 2, the Index function returns the

second list item, "Joseph";

• When Index is set to 3, the Index function returns the

third list item, "Lucy";

• When Index is set to 4, the Index function returns the

fourth list item, "Peter".

2 IFF

The VBA IIf function evaluates an expression and returns one of

two values, depending on whether the expression evaluates to

True or False. The syntax is:

IIf(Expression, TruePart, FalsePart)

Where the function arguments are:

Expression - The expression that is to be evaluated.

TruePart - The value that is to be returned if the supplied Expression evaluates

to True.

FalsePart - The value that is to be returned if the supplied Expression evaluates

to False.

Example 1

' Test if a Supplied Integer is Positive or Negative

Dim testVal As IntegerDim. sign1 As StringDim, sign2 As String

' First call to IIf function. The test value is negative

testVal = -2

sign1 = IIf(testVal < 0, "negative", "positive")

' sign1 is now equal to "negative"

' Second call to IIf function. The test value is positive

testVal = 8

sign2 = IIf(testVal < 0, "negative", "positive")

' sign2 is now equal to "positive"

In the above VBA code:

• In the first call to the IIf function, the expression,

testVal < 0 evaluates to True and so the TruePart argument

(the String "negative") is returned;

• In the second call to the IIf function, the expression,

testVal < 0 evaluates to False and so the FalsePart argument

(the String "positive") is returned.

Example 2

The following VBA code shows a nested IIf function.

' Test if a Supplied Integer is Positive, Negative or Zero

Dim testVal As Integer

Dim sign1 As String

testVal = -2

sign1=IIf(testVal=0, "zero", IIf(testVal < 0,"negative","positive"))

' sign1 is now equal to "negative".

In the above VBA code, there are two calls to the IIf function,

one of which is nested inside the other:

• If the outer IIf function evaluates to True, the String

"zero" is returned;

• If the outer IIf function evaluates to False, the inner IIf

function is called:

o If the inner IIf function evaluates to True, the

String "negative" is returned;

o If the inner IIf function evaluates to False, the

String "positive" is returned.

In the example, the test value is equal to -2 and so the nested

IIf function returns the String "negative".

3 SWITCH

The Switch function evaluates a list of Boolean expressions and

returns a value associated with the first true expression.The

syntax is:

Switch(Expr_1, Val_1, [Expr_2, Val_2], [Expr_3, Val_3], ...)

Where the function arguments are:

Expr_1,

[Expr_2],

...

- One or more boolean expressions to be evaluated

Val_1,

[Val_2],

...

- The values to be returned if the corresponding Expr-1, [Expr-2], etc. is

the first True expression.

If none of the supplied expressions evaluate to True, the Switch function
returns the value Null.

Example 1

' Return a surname corresponding to a supplied forename

Dim fname As String

Dim sname As String

fname = "Lucy"

sname = Switch(fname = "Mary","Jones",fname="Joseph","Johnson",_

 _ fname = "Lucy", "Smith")

' sname is now equal to "Smith"

In the above call to the Switch function, the third expression,

fname ="Lucy" is the first expression to evaluate to True.

Therefore, the function returns the associated surname, "Smith".

Example 2

' Return a name, depending on an integer value.

Dim i As Integer

Dim fname As String

i = 12

fname = Switch(i< 10,"Mary",i< 20,"Joseph",i<30,"Lucy")

'fname is now equal to "Joseph"

In the above call to the Switch function, the second expression,

i<20 is the first expression to evaluate to True. Therefore, the

function returns the associated name, "Joseph".

Note that both the second expression i<20 and the third

expression, i<30 evaluate to True. However, the Switch function

only returns the value corresponding to the first True

expression in the supplied list.

DATES

As well as functions operating on strings, also functions

operating on date and time are extremely useful to manipulate

data stored in a Relational Data Base. The main ones are

listed in the table below; in the following parts we will

detail the functioning of the less intuitive ones.

VBA Date & Time Functions

Date

Returns the current date.

DateAdd

Adds a time interval to a date and/or time.

DateDiff

Returns the number of intervals between two dates and/or times.

DatePart

Returns a part (day, month, year, etc.) of a supplied date/time.

DateSerial

Returns a Date from a supplied year, month and day number.

DateValue

Returns a Date from a String representation of a date/time.

Day

Returns the day number (from 1 to 31) of a supplied date.

Hour

Returns the hour component of a supplied time.

Minute

Returns the minute component of a supplied time.

Month

Returns the month number (from 1 to 12) of a supplied date.

MonthName

Returns the month name for a supplied month number (1 to 12).

Now

Returns the current date and time.

Second

Returns the second component of a supplied time.

Time

Returns the current time.

Timer

Returns the number of seconds that have elapsed since midnight.

TimeSerial

Returns a Time from a supplied hour, minute and second.

TimeValue

Returns a Time from a String representation of a date/time.

Weekday

Returns an integer (from 1 to 7), representing the weekday of a
supplied date.

WeekdayName

Returns the weekday name for a supplied integer (from 1 to 7).

Year

Returns the year of a supplied date.

https://www.excelfunctions.net/vba-date-function.html
https://www.excelfunctions.net/vba-dateadd-function.html
https://www.excelfunctions.net/vba-datediff-function.html
https://www.excelfunctions.net/vba-datepart-function.html
https://www.excelfunctions.net/vba-dateserial-function.html
https://www.excelfunctions.net/vba-datevalue-function.html
https://www.excelfunctions.net/vba-day-function.html
https://www.excelfunctions.net/vba-hour-function.html
https://www.excelfunctions.net/vba-minute-function.html
https://www.excelfunctions.net/vba-month-function.html
https://www.excelfunctions.net/vba-monthname-function.html
https://www.excelfunctions.net/vba-now-function.html
https://www.excelfunctions.net/vba-second-function.html
https://www.excelfunctions.net/vba-time-function.html
https://www.excelfunctions.net/vba-timer-function.html
https://www.excelfunctions.net/vba-timeserial-function.html
https://www.excelfunctions.net/vba-timevalue-function.html
https://www.excelfunctions.net/vba-weekday-function.html
https://www.excelfunctions.net/vba-weekdayname-function.html
https://www.excelfunctions.net/vba-year-function.html

1 DateAdd

DateAdd adds a time interval to a supplied date and/or time, and

returns the resulting date/time. The syntax is:

Dateadd(Interval, Number, Date)

Where the function arguments are:

Interval - A string specifying the interval to be used. This can have any of the

following values:

"d" - Days

"h" - Hours

"n" - Minutes

"m" - Months

"q" - Quarters (of a Year)

"s" - Seconds

"ww" - Weeks

"yyyy" - Years

Number - The number of intervals to add to the specified Date.

Date - The original date/time that you want to add the specified number of

intervals to.

Example

Dim oldDate As Date

Dim newDate As Date

' Add 32 days to the date 11/29/2015

oldDate = #11/29/2015#

newDate = DateAdd("d", 32, oldDate)' the date #12/31/2015#

' 27 hours after 9:00 AM on 11/29/2015

oldDate = #11/29/2015 9:00:00 AM#

newDate = DateAdd("h", 27, oldDate) ' the date #11/30/2015 12:00#

' Calculate date that is 3 months after 12/31/2015

oldDate = #12/31/2015#

newDate = DateAdd("m", 3, oldDate)' the date #3/31/2016#

2 DateDiff

DateDiff returns a Long data value representing the number of

intervals between two supplied dates/times. The type of interval

(e.g. hours, days, months, etc.) is specified by the user. The

syntax is:

DateDiff(Interval,Date1,Date2,[FirstDayOfWeek],_

 _ FirstWeekOfYear])

Where the function arguments are:

Interval - A string specifying the interval to be used. This can have any of

the following values (same values as in the previous table)

Date1 - A date value, representing the start date/time for the

calculation.

Date2 - A date value, representing the end date/time for the

calculation.

[FirstDayOfWeek] - An optional FirstDayOfWeek enumeration value, specifying the

weekday that should be used as the first day of the week.

This can have any of the following values:

vbUseSystemDayOfWeek - as specified

in your

system

settings

vbSunday - Sunday

vbMonday - Monday

vbTuesday - Tuesday

vbWednesday - Wednesday

vbThursday - Thursday

vbFriday - Friday

vbSaturday - Saturday

[FirstWeekOfYear] - An optional FirstWeekOfYear enumeration value, specifying the

week that should be used as the first week of the year.

This can have any of the following values:

vbSystem - The first

week as

specified in

system

settings

vbFirstJan1 - The week in

which Jan

1st occurs

vbFirstFourDays - The first

week that

contains at

least four

days in the

new year

vbFirstFullWeek - The first full

week in the

new year

Example

' Calculate the number of days between 11/29/2015 and 12/31/2015

Dim dt1 As Date, dt2 As Date

Dim nDays As Long, nHours As Long, nWeeks As Long

dt1 = #11/29/2015#

dt2 = #12/31/2015#

nDays = DateDiff("d", dt1, dt2)' nDays now has the value 32

' Number of hours between 11/29/2015 9:00 and 11/30/2015 12:00

dt1 = #11/29/2015 9:00:00 AM#

dt2 = #11/30/2015 12:00:00 PM#

nHours = DateDiff("h", dt1, dt2)' nHours now has the value 27

' Number of weeks between 11/29/2015 and 12/8/2015

dt1 = #11/29/2015#

dt2 = #12/8/2015#

nWeeks = DateDiff("w", dt1, dt2)'nWeeks now has the value 1

' Calculate the number of calendar weeks between 11/29/2015 and

12/8/2015

' First day of the week = Monday

dt1 = #11/29/2015#

dt2 = #12/8/2015#

nWeeks = DateDiff("ww", dt1, dt2, vbMonday)' nWeeks is 2

Please note that, if the Interval argument is specified to be "w"

(weeks), the DateDiff function returns the number of whole weeks

between the two supplied dates. Partial weeks are ignored.

Conversely, if "ww" (i.e, calendar weeks) is specified, returns the

number of weeks between the start of the week containing the supplied

Date1 and the start of the week containing the supplied Date2.

Example 2

' Calculate the number of months between 11/30/2015 and 12/1/2015

' and the number of months between 12/1/2015 and 12/31/2015

Dim nMths1 As Long, nMths2 As Long

nMths1 = DateDiff("m", #11/30/2015#, #12/1/2015#)

nMths2 = DateDiff("m", #12/1/2015#, #12/31/2015#)

' nMths1 has the value 1 and nMths2 has the value 0

Please note that, if the interval is specified to be months, quarters

or years, the DateDiff function simply subtracts the months, quarters

and/or years during which each of the supplied dates occur. Therefore,

the function will return 1 for the number of months between the last

day of November 2015 and the first day of December 2015, but will

return 0 for the number of months between the first and last day of

December 2015.

3 DatePart

DatePart returns a part (day, month, week, etc.) of a supplied date

and/or time.The syntax is:

Month(Interval, Date, [FirstDayOfWeek], [FirstWeekOfYear])

Where the function arguments have the same meaning of the previously

introduced functions.

Example

' Return the day, month & year from the date 12/31/2015

Dim dy As Integer, mth As Integer, yr As Integer

dy = DatePart("d", #12/31/2015#)

mth = DatePart("m", #12/31/2015#)

yr = DatePart("yyyy", #12/31/2015#)

' dy = 31, mth = 12 and yr = 2015.

' Return hour, minute and seconds from the time 3:05:30 PM

Dim hr As Integer, min As Integer, sec As Integer

hr = DatePart("h", #3:05:30 PM#)

min = DatePart("n", #3:05:30 PM#)

sec = DatePart("s", #3:05:30 PM#)

' hr = 15, min = 5 and sec = 30

' Return day, week & quarter info. from the date 12/31/2015

Dim dyYr As Integer, dyWk As Integer, wkYr As Integer,

Dim qtr As Integer

dyYr = DatePart("y", #12/31/2015#)

dyWk = DatePart("w", #12/31/2015#)

wkYr = DatePart("ww", #12/31/2015#)

qtr = DatePart("q", #12/31/2015#)

' dyYr = 365, dyWk = 5, wkYr = 53 and qtr = 4.

4 DateSerial

DateSerial returns a Date from a supplied year, month and day

number. The syntax is:

DateSerial(Year, Month, Day)

Where the function arguments are:

Year - An integer representing the year.
Note that:

• One- and Two-digit year numbers (from 0 to 99) are interpreted as years
between 1930 and 2029;

• Negative year numbers are subtracted from the year 2000 (e.g. -1
represents the year 1999, etc.).

Month - An integer representing the month.
Integer values less than 1 or greater than 12 are interpreted as follows:

-1 - represents November of the
previous year

0 - represents December of the
previous year

13 - represents January of the
following year

14 - represents February of the
following year

etc.

Day - An integer representing the day of the month.
Integer values less than 1 or greater than the number of days in the current
month are interpreted as follows:

-1 - represents the second to the last day
of the previous month

0 - represents the last day of the previous
month

days in
current
month + i

- represents the i-th day of the following
month

Example

Dim dt As DAte

dt = DateSerial (2015, 2, 3) 'Result: "2015-02-03"

dt = DateSerial (2016, 1, 0) 'Result: "2015-12-31"

dt = DateSerial (2016, 0, 0) 'Result: "2015-11-30"

dt = DateSerial (2016, -1, 1) 'Result: "2015-11-01

5 DateValue

DateValue returns a VBA Date from a supplied String

representation of a date. Time information within the supplied

string is ignored. The syntax is:

DateValue(Date)

Where the Date argument is a valid String representation of

date/time.

The DateValue function can interpret text representations of

dates that are in a recognised Excel format. However, the

function is unable to interpret dates that include the text

description of the weekday (Sunday, Monday, etc).

Example

' Convert two supplied strings into dates

Dim dt1 As Date, dt2 As Date

dt1 = DateValue("12/31/2015")

' dt1 is now equal to the date 12/31/2015

dt2 = DateValue("Jan 1 2016 3:00 AM")

' dt2 is now equal to the date 1/1/2016

In the above VBA code:

• The DateValue function converts the text string

"12/31/2015" into the VBA date 12/31/2015

• The DateValue function converts the text string "Jan 1 2016

3:00 AM" into the VBA date 1/1/2016

• Note that the time information in this text string is

ignored

6 TimeSerial

TimeSerial returns a Time from a supplied hour, minute and

second. The syntax of the function is:

TimeSerial(Hour, Minute, Second)

Where the function arguments are:

Hour - An integer (generally from 0 to 23) representing the hour of the required

time.

Minute - An integer (generally from 0 to 59) representing the minute of the

required time.

If the supplied Minute argument is less than 0 or greater than 59, this

value is subtracted from, or added to, the supplied number of hours (as a

partial hour).

Second - An integer (generally from 0 to 59) representing the second of the

required time.

If the supplied Second argument is less than 0 or greater than 59, this

value is subtracted from, or added to, the supplied number of minutes (as

a partial minute).

Example

' Return two simple times

Dim time1 As Date, time2 As Date, time3 As Date

time1 = TimeSerial(11, 0, 0)

' The variable time1 is now equal to 11:00:00 AM.

time2 = TimeSerial(19, 15, 30)

' The variable time2 is now equal to 7:15:30 PM.

' Return four different times (minute or second is outside the range 0-59)
time1 = TimeSerial(8, -1, 0)
' The variable time1 is now equal to 7:59:00 AM.
time2 = TimeSerial(8, 60, 0)
' The variable time2 is now equal to 9:00:00 AM.
Dim time3 As Date
time3 = TimeSerial(8, 0, -1)
' The variable time3 is now equal to 7:59:59 AM.
Dim time4 As Date
time4 = TimeSerial(8, 0, 60)
' The variable time4 is now equal to 8:01:00 AM.

MESSAGES

In VBA it is possible to ask the user for some inputs and,

similarly, it is possible to show a message to the user and to

wait for his or her answer (depending on the displayed message).

To this aim it is possible to use the InputBox and the MsgBox

functions. Actually, especially when programming using Forms and

graphical components, the use of these functions is fairly

limited, yet it is worth knowing how they work.

1 InputBox

InputBox function displays a dialog box, prompting the user for

input, and containing an OK button and a Cancel button. The

function returns a text string containing the user's input if

the OK button is selected or an empty text string if the Cancel

button is selected. The syntax is:

InputBox(Prompt, [Title], [Default], [XPos], [YPos], _

 _[HelpFile], [Context])

Where the function arguments are:

Prompt - The text string that you want to appear in the input box.

[Title] - A optional text string that specifies a title to be displayed at the top

of the input box.

[Default] - A optional text string that is displayed in the input box as the default

response if no other response is entered.

[XPos] - An integer specifying (in twips) the horizontal distance of the input

box, from the left edge of the screen.

[YPos] - An integer specifying (in twips) the vertical distance of the input

box, from the top of the screen.

[HelpFile] - An optional string argument, identifying the Help file relating to the

input box.

[Context] - An optional numeric value that is the context ID for the Help topic

relating to the input box.

2 MsgBox

MsgBox function displays a modal message box. The function

returns a VbMsgBoxResult enumeration, which tells you which

button has been selected by the user. The syntax is:

MsgBox(Prompt, [Buttons], [Title], [HelpFile], [Context])

Where the function arguments are:

Prompt - The text string that you want to appear in the message box.

[Buttons] - An optional argument that specifies the properties of the message box.
The main options, defining the number and type of buttons to be
displayed, are:

Value Buttons Displayed

vbOKOnly - OK

vbOKCancel - OK and Cancel

vbAbortRetryIgnore - OK and Cancel

vbYesNoCancel - Yes, No and Cancel

vbYesNo - Yes and No

vbRetryCancel - Retry and Cancel

[Title] - A optional text string that specifies a title to be displayed at the top of

the message box.

MsgBox returns one of the following VbMsgBoxResult enumeration

values, informing the developer of the option that has been

selected by the user:

VbMsgBoxResult Value Button Selected
vbOK 1 OK
vbCancel 2 Cancel
vbAbort 3 Abort
vbRetry 4 Retry
vbIgnore 5 Ignore
vbYes 6 Yes
vbNo 7 No

